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ABSTRACT

This paper investigates heat and mass transfer in a Magnetohydrodynamic flow over a moving vertical plate
with convective boundary condition in the presence of thermal radiation. Similarity method is used to
transform the system of coupled non-linear partial differential equations, governing the flow, heat and mass
transfer problems to a system of coupled non-linear ordinary differential equations. The resulting equation is
then solved, using Homotopy Analysis Method (HAM). The effect of thermal radiation, Magnetic Parameter
and all other parameters encountered in the course of the investigation were examined on the fluid flow, heat
and mass transfer. The results show among all other obtained that higher values of radiation parameter pioneer
the dominance of conduction over radiation and consequently depressed the thermal boundary layer thickness.
Keywords: Vertical plate, similarity solution, magnetic field, thermal radiation, heat and mass transfer,
homotopy analysis method (HAM).

1. INTRODUCTION

In most of the practical transport processes, the heat transfer is always accompanied by the
mass transfer. The study of magnetohydrodynamic (MHD) flow with heat and Mass transfer over
a moving surface and the effect of thermal radiation has been of interest due to its wide
application scientific and environmental process such as astrophysical flows and geothermal
reservoir. As a result of the various application of this problem, it has attracted the attention of
many researchers and extensively studied in the literature.
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Nomenclatures

g Acceleration due to gravity a  Thermal dif fusivity

D Mass dif fusivity Br Thermal expansion coeficient
(x,y) Coordinates v Kinematic viscosity

b/ Similarity variable p Fliud density

P Stream function B. Concentration expansion

u Dynamic viscosity Coefficient

Das (2010) and Seethamahalakshmi et’al. (2011) studied MHD free convection flow and
Mass transfer near a moving vertical plate in the presence of thermal radiation. Their results
showed that increase in thermal radiation parameter contributes to the decrease in velocity field.
Ghara et’al (2012) reported the effect of radiation on MHD free convection flow past an
impulsively moving vertical plate with ramped wall temperature, buttressed by Siva et’al (2016).
It was reviewed that temperature profile increases the increase in thermal radiation and Eckert
number. The radiation effect on the flow past a vertical plate with the mass transfer was examined
by Rajput and Kumar (2012). Narahari and Ishaq (2011) reported the radiation effects of free
convection flow near a moving vertical plate with Newtonian heating. Das et’al. (2015) and Nepal
et’al. (2014) observed the free convection flo w past a vertical plate with heat and mass fluxes in
the presence of thermal radiation and concluded that thermal boundary layer thickness increases
with increase in radiation parameter. Attention has also been given to the hall effect as
Mohammed et’al (2013) observed the heat and Mass transfer in MHD free convection flow over
an inclined plate with hall current and reported that there is no effect of the Magnetic parameter
and Schmidt number on the temperature field and concentration. However, Gnaneswara (2014)
reported the effect of the hall parameter in the temperature is small and the magnetic and hall
parameters have opposite effects on the velocity and temperature profiles while studying the
effect of thermal radiation, viscous dissipation and hall current effects in the MHD convection
flow over a stretched vertical flat plate.

Several investigations were performed on porosity in a medium with different conditions.
Sandeep et’al (2012), Salem and Rania (2012) studied MHD heat and mass transfer through a
porous medium as well as Jhansi et al (2015). Other authors like Idowu et’al (2013), Lakshmi
et’al. (2014) and Olubode et’al (2016) investigated MHD flow along a vertical porous plate.
Recently, Opiyo and Alfred (2017) studied the effects of Magnetohydrodynamic (MHD) fluid
flow on a two-dimension boundary layer flow of a steady free convection heat and Mass transfer
in an inclined plane in which the angle of inclination is varied. It was found that the velocity
increases with an increase in the thermal and Solutal Grashof numbers. The velocity and
concentration of the fluid decrease with an increase in the Schmidt number.

The objective of this present investigation is to extend the work in Makinde (2010) to include
Heat and Mass transfer in Magnetohydrodynamic (MHD) flow over a moving vertical plate with
convective boundary condition in the presence of thermal radiation. The governing equations are
solved analytically via Homotopy Analysis Method (HAM), developed by Liao (2003) and effect
of different Parameters on fluid flow are considered.

2. MATHEMATICAL FORMULATION

Consider a steady-state two-dimensional boundary layer flow of a stream of cold
incompressible electrically conducting fluid along a vertical plate. The surface of the plate is
assumed to be heated by convection from a hot fluid at temperature T, that produces a heat
transfer coefficient hr. The cold fluid in contact with the surface of the plate generate heat
internally at volumetric rate Q,. A magnetic field B, is placed in a transverse direction to the
flow. The magnetic Reynolds number is assumed to be small therefore the induced magnetic field
is neglected. The joule heating term in energy equation is assumed to be neglected as it really
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very small in slow motion free convection flow. x — axis is taken parallel to the plate direction
and y — axis normal to it (see fig.1). C,, is the species concentration while T, and C,, represent
ambient temperature and concentration respectively. The fluid velocities in x and y dircetions are
denoted by u and v respectively. The fluid temperature and concentration are respectively taken
asT and C.
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Figure 1. Flow configuration and coordinate system

Under the assumption stated above, boundary layer approximation and usual Boussinesq's
approximation, the governing equations the present problem can be expressed as
ou | ov

o Fay =0 ®
“Z_Z‘H’Z_;:V%_Ui°u+gﬁr(T—Tm)+gﬂC(C—Coo) ?
ug—i+vg—§= ‘;272 @

with the following boundary conditions

U(x,0) = Uy, V(x,0) =0, —k%’;") = hy[T; — T(x,0)], C,(x,0) = Ax* +C,,

U(x, ) =0, T(x,0) =Te, C(x,0) =Cc ()
where 1 denotes the power index of the concentration and k is the thermal conductivity

coefficient.
The radiative heat flux by Roseland is adopted and expressed as
—40 9T*
qr = 3,(‘:@ (6)
where ¢ is the Sterfan-Boltzmann constant and K* is the mean of absorption coefficient. It is
assumed that the temperature differences within the flow are such that the term T* can be
expressed as a linear function of temperature by expanding T# in a Taylor series about Ty, as;

T* = TET + 4T3 (T — Ty) — 6T2(T —To)2 +. . . )
and neglecting higher order terms beyond the first degree in (T — T,,) gives
T* ~ 4T3T — 3T4 ®)
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The substitution of equations (6) and (8) in equation (3) gives a modified equation of the form
aT T _ 82T | v (du\? | 160Tw 9°T | Qo(T—Teo)
ug v =ain () tae T ©)
Following Makinde (2010) and Mohammed et’.al (2015), the continuity equation (1) is
satisfied automatically by invoking the stream function defined by

_w __w
u== and v= o (10)

and obtained similarity equations of the problem by introducing the following similarity
transformation

=y v= T, o =1, ol = S a

Where 7 is an independent similarity variable, 6(z7) and @(z) are dimensionaless temperature
and concentration respectively, U, is the velocity of the plate. Apply equation equations (10) and
(11) into equations (2), modified equation (9) and equation (4), we have

F G + 3 F@f" () = Haf' () + Gro(g) + Ged(n) = 0 (12)
(1+55) 0" () + PrEc™ (m)? + 5 Pro’ (pf () + QB(x) = 0 (13)
0" (i) + 5 Sef ()@ () = 0 (14)

Which agreed with Makinde (2010), Rout et’al (2013), Lakshmi et’al.(2014), Hemalatha and
Bhaskar (2015) where the prime symbol represents differentiation with respect to ;7 and

Ha =585 Gp = 9 Ta)t o 9Be(CuColx Bi_yF
7 7 _k U(]’

pUy ug us
v v XQov Ué 40T, k*

Pr=%, Sc=%, Q=2 Fc=—T0 _ Rg=222 g¢= (15)
a D k*Uy Cp(Tf-Teo) KK* pCp

For Ha is the local magnetic field parameter, Gr is the local thermal Grashof number, Gc is
the Solutal Grashof number, Bi is the local convective heat transfer parameter, Pr is the Prandtl
number, Sc is the Schmidt number, Q is the heat source, Ec is the Eckert number and Ra is the
Radiation parameter. The corresponding boundary conditions are as follows
f(0)=0, f'(0)=1, 6'(0) = Bi[6(0) — 1], @(0) =1 (16)
f'(0) =0, 8(0) =0, B(0)=0 17)

The local parameters Bi, Ha, Gr, Qand Gc in (12-14) denotes the function of x. In an
attempt to have similarity solution, we assume the following parameters

T S t

I w

X X X X

Where p,q,r,x,and t are constant under the appropriate dimension. The coupled equations
(12-14) subject to the boundary conditions of equations (16) and (17) are solved analytically by
Homotopy Analysis Method as shown in (3.0) below. For the purpose of Engineering application,
we compute the local skin friction coefficient, the Local Nusselt number, the Local Sherwood
number and the plate surface temperature are considered interms of £ (0),—6'(0), —®'(0) and
6(0) respectively and the results obtained are presented in the tabular form.

3. HOMOTOPY ANALYSIS METHOD

The set of coupled Non-linear differential equations are usually inevitable and has become a
culture in mathematical modeling. They are solved by a different method, among which are;
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Adomian Decomposition, Variation Iteration Method and so on. Homotopy Analysis Method
(HAM), discovered by Liao (2003) was preferred over another method due to its efficiency in
solving both Linear and non-linear differential equation particularly at infinite domain. We
consider the differential equations

LIF@I=0 and  N[f(@l=0 (19)
where L and N are called Linear and non-linear function respectively (for Algebra Equation)
or Linear and Non-linear operator respectively (for differential Equations), n represents an
independent variable, while f(r) is the solution of (19).
Let fo(r) be initial guess for f(n) and & #0, H(y) # 0 denote the auxillary parameter,
auxiliary function respectively, we then construct a family equation of the form

A =nLf@;7) = fo)] = raH@)N[f (n; 7] (20)
where r € [0,1] is called an embedding parameter. When, r = 0, we have
f@;0) =fo(m) and N[f(y; D] =0but hH(y) #0 for, r=1 (21)

Hence, in respect to the boundary conditions (16) and (17), f (1)), 6(r) and @())
Can be expressed by the set of base functions

{0/ exp(-nj)|j 2 0,n >0} (23)
in the following form

f@) = X Xio ann’ exp(=1), O() = Lo Biizo b e exp(—nj) and B(n) =

=0 Xk=0 Crllc,kllk exp(—nj) (24)
where af . , bk, and cf, are coefficients. However, as long as such a set of base functions is

determined, the auxiliary function H(x), initial approximation f;(r), 8o(r), @o(n), and the

auxiliary linear operators Ly, Lg, and Ly must be chosen in such a way that solution of the

corresponding high-order deformation exist (see Farooq et’al (2015) and Olubode et’al (2016)).

The point raised above is essential in the framework of homotopy Analysis Method as its provide

us with a basic rule called the rule of solution expression for (), 6(x) and @(x). In accordance
with the rule of solution and boundary conditions (16) — (17), we choose the initial guess

fo@) =1 —exp(-m),  Bo() = Z5E, Bo(n) = exp(—n) (25

as the initial linear approximations of f(y)),8(r) and @(r). The auxiliary linear operations
Ly, Lg, and Ly are;

33 f(n; af (n; 926 (n; %20(z;
Lylf ()] = 552 — D 1 [6(;r)] = S50 — 6(n; ) and. Lol )] = 75 27 -
(1) (26)
agreed with the following properties
Le[Cy + Crexp(p) + Czexp(—=1D] = 0, Lg[Cy + Csexp(—1)] =
0and Ly[Cs+ Crexp(—p] =0 27)
where Cy, Cs, ..., C, are constants.

3.1. Zero Order Deformation Problem.

A =LelfGpr) = fo(p] = rhgHe (N [f (55 7), 0 (a5 1), @ (5 7)] (28)
(A =Lglf (1) — 65(;D] = rhgHe (D No[f (17, 8z 7)] (29)
A =MLglf (g r) — B ()] = rhgHe (D Ng[f (17, 7), D (s, 7] (30)
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having the following boundary conditions.
of (; 26 (y; .
flp=0;r) =0, f;?zr) | =0 =1, ;117]” | =0 =Bil6(y=0;7) —1],8(7=0;r) =1 (31)
f ()
a

|1]—)oo=0, 9(1]—)00,7"):0:@(17_)00'7.) (32)

The nonlinear operator followed from equations (12)-(14) and defined as

_632(131;1") + %f(q; r) azgfg;r) — Ha af(q D4 Gro (7)) +Ged(r) =0 (33)
326 (1) 3% f (1) 1, 00(gr)

1+ 5| o F + PrEc (S5 E gq”) +5 PR fpr) + QO T) = 0 (34)

z “’(” D4 25cf ( )"’“’;f]") =0 (35)

where re[0,1] is the same as embedding parameter defined above. Putting r = 0 and r = 1,
we respectively have the following solution from equation (28)-(30).

Le[f (7 0) — fo(ip]l = 0, Lg[0(s3;0) — 6o(;] = 0, Ly[@(5;0) — Bo(;p] =0 (36)

F30) = fo(m, 6(5;0) = 6o(;), B(z30) = Bo (1) @7)
With

flg=0;0) = 0L =1, LD = Bilg(n=0;0)~1],0(7 = 0;0) = 1 (38)

—af(q;]w D =0, 9(7 > 0;0) = 0 = B(5 - ;0) (39)
and

0=Nelf(gr),00p7),0(r)],  0=Nglf(7r),0(pm)], 0= Nglf(g7), @] (40)
But thf(I]) * 0, thg(I[) # 0 and h@H@(IZ) +0

fD=fp, 6(1) =0(), Oz 1) =0(y (41)
with

flg=0;1) =0, TR =1, D = Bifg(7 = 0i7) ~ 1],0(7 = 0;1) =1 (42)

Yol — o, gy - ;1) =0 = @7 - ©; 1) (43)

ag
3.2. Mth-Order Deformation Problem

The increase in embedding parameter r from Zero to One(0 — 1), lead to a variation of the
function f(z;7),0(z; 1) and @(z7; ) from initial guess f,(77), 6o(z7) and @,y(z) to the solutions
f(g;7),0(g; ) and @(z; 7). Using Taylor series with respect to r, we have
fGpr) = fol + =1 fn(@)r™ ,0(5;7) = 00(1) + =1 O (DT™ and @(57) = Do) +
Ym=10m(r™ (44)

1 0™f(gr) 1 0™m0(g;T) 1 0™m@(zgr)
where  fi, () = o fn@) = o ——am— D) =

Obviously, the convergence of the series (44) are subject to the auxiliary parameter .
Assuming # is chosen such that the series (44) converge at r = 1, we have

flp) = fol@ +ZR=1fm(@), 0() =00(x) + X7-10m() and B(p) = Bo(z) +
Yim=1Pm () (45)
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For the mth-order deformation, we take the derivative of zeroth-order deformation of
equations (28)-(30) mtimes with respect to r, dividing by m! and set r = 0, we have

Lelfn () = Xmfne1 (] = AR, (1), Lo [0 (1) = XmOm-1(m)] = RS, (1) and L[ @y (1) —

XmOm—1(] = ARY, (1) (46)
having the following boundary conditions.
3 fin(7=0; 86,,
fnn = 0;0) = 0,200 — 0, 20000 — ifg,, (5= 0;0)], B (7 = 0;0) = 0 @7)
a im (> 00
D =0, 6,1~ 0) = 0= B~ ) (48)
Where
er;(II) — d f:inq;(q) +1 ( )d fm 1 n(2) — Ha dfm—1(11) + Gr@m_1 + GC@m—1 (49)
0 d?0pm_ 1(’]) ld fn(’])d fm—1- n(’[) A0 _1— n(’[)
R&(p) = 1+ ]—+prE Spg St e 4 2 Pr S fu() P 4
Q0m—1 (50)
Om-1 Pm—1-n
RS.(p) = ddiz(q)‘F ScXnss fol )diq(q) (51)

and Xm=0 for m<1, y,=1 for m>1
having the following as a general solution

f(@) = fin () + €1 + Coexp(—1) + C3 exp(y) (52)
O () = 05, (1)) + C4 + Cs exp(z) (53)
O () = B3, (2D + C¢ + C; exp(z) (54)

where f;, (1), 0;, (1) and @5, (z) represent the particular solution of equations (47) and (48).
In agreement with Liao (2003), we consider the rule of coefficient ergodicity and rule of solution
existence and choose the auxiliary functions as

Hf = Hg = H@ = 1
3.3. Convergence of the HAM Solution

The convergence of solution of this present investigation as revealed by Liao (2003) is
considered, Equation (45) contains the non-zero auxiliary parameters hy, hg and hy that
determine the convergence region and rate of approximation for Homotopy Analysis Method at
10-order with Ha = 0.1, Gr =0.1, Gc = 0.1, Pr =0.72, Sc =0.62, Bi =0.1, Q = 0.01,
Ec =0.1, Ra = 0.7. The admissible values of 7, iy and hy Was consider at the range where
h — curve becomes parallel and resulted in —1.2 < iy < —03, —0.1 < hy <02 and — 1.7 <
fig < —0.5 for fi, iy and kg respectively as shown in figures 2-below
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Figure 2. ig-curve of  Figure 3. hy-curve of 6'(0) at 10" Figure 4. fis-curve of @'(0) at 10
£"(0) at 10" order of order approximation order of approximation
approximation

4. VALIDATION OF THE STUDY

Table 1. Comparison of the present result with Makinde (2010)

Makinde (2010) Present result
Ha | Gr | Gc | Bi Pr Sc £"(0) —0'(0) 6(0) —0'(0) £"(0) —0'(0) 0(0) —-0'(0)

0.1 (0.1 |0.1 |0.1 |0.72 |0.62 |-0.402271 |0.078635 |0.213643 |0.3337425 |-0.402272 |(0.078636 [0.213644 |0.3337425

1.0 |01 |01 (0.1 |0.72 [0.62 (-0.352136 [0.273153 |0.726846 |0.3410294 |-0.352137 |0.273154 |0.726845 [0.3410295
10 |01 |01 (0.1 |0.72 [0.62 [-0.329568 [0.365258 |0.963474 |0.3441377 |-0.329568 |0.365259 |0.963475 [0.3441377

0.1 (05 (0.1 |0.1 |0.72 |0.62 |-0.322212 |0.079173 [0.208264 |0.3451301 (-0.322213 (0.079174 |0.208264 |0.3451302
0.1 (1.0 (0.1 |0.1 |0.72 |0.62 |-0.231251 |0.079691 [0.203088 |0.3566654 (-0.231252 [0.079692 |0.203089 |0.3566654
0.1 (0.1 |05 |0.1 |0.72 |0.62 |-0.026410 |0.080711 |0.192889 |0.3813954 |-0.026411 |(0.080712 [0.192889 |0.3813955
0.1 (0.1 |1.0 |0.1 |0.72 |0.62 |0.3799184 |0.082040 |0.179592 |0.4176697 |0.3799185 |(0.082041 [0.179593 |0.4176698
0.1 (0.1 |0.1 |10 |0.72 |0.62 |-0.985719 |0.074174 |0.258252 |0.2598499 |—0.985720 |0.074175 [0.258253 |0.2598500

0.1 (0.1 (0.1 |5.0 |0.72 |0.62 |-2.217928 |0.066156 [0.338435 |0.1806634 (-2.217929 (0.066157 |0.338436 |0.1806634

0.1 (0.1 |0.1 |0.1 |1.00 |0.62 |-0.407908 |0.081935 |0.180640 |0.3325180 |—0.407909 |(0.081936 [0.180640 |0.3325180

0.1 (0.1 (0.1 |01 |7.10 |0.62 |-0.421228 |0.093348 [0.066513 |0.3305618 (-0.421229 (0.093349 |0.066514 |0.3305619

0.1 |0.1 [0.1 ]0.1 ]0.72 ]0.78 |-0.411704 ]0.078484 [0.215159 ]0.3844559 |-0.411705 [0.078485 |0.215160 |0.3844560

Here, we first ensure the successful implementation of the numerical result by comparing it
with the previous work done. So, these present results are compared to those obtained by Makinde
(2010) for the local skin-friction, Nusselt Number, Sherwood number and plate surface
temperature by setting Q = 0, Ra = 0, Ec = 0. The results strongly agreed with each other (see
Table 1).

5. DISCUSSION OF RESULTS

In order to get a physical understanding of the present problem, equation (12)-(14) with the
boundary conditions (16) and (17) have been solved using Homotopy Analysis Method (HAM) at
20th —order to meet the far field boundary condition at infinite domain. The resulting effects of
various parameters embedded in the flow system such as; Magnetic Parameter (Ha), Thermal
Grashof Number (Gr), Solutal Grashof Number (Gc), Prandtl Number (Pr.), Schmidt Number
(Sc), Local Heat transfer parameter (Bi), Heat Source Parameter (Q), Eckert number (Ec), and
Radiation Parameter (Ra) on Velocity profile, Temperature profile, Concentration profile, Local
Skin-friction, Local Nusselt Number, plate surface temperature and Sherwood number were
presented in graphically and numerically.

During the numerical computation, the Prandtl number was considered to be 0.72 which
correspond to air and it is mostly encountered fluid in nature and commonly used in engineering.
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The positive values of thermal Grashof number and Solutal Grashof number which are
collectively referred to as buoyancy parameter correspond to the greater cooling of the surface
and shows that the concentration at the plate surface is higher than the free stream concentration
respectively. The cooling surface such as nuclear reactors is frequently encountered in
engineering and industry. The values of Schmidt number Sc for diffusing chemical species in air
were chosen to be Sc = 0.24 (H,), 0.62 (H,0), Sc = 0.78 (NH3) and Sc = 2.62 (CoH;3).
Other parameters were discussed by holding Ha = Gr = Gc = Bi = Ec = 0.1, Sc = 0.62,
Pr =0.72, Q = 0.01, Ra = 0.7 constant for each varying parameter.

1
ufi
0l &
ul

0.2r

0 5 10 15 '

Figure 6. Temperature profile for Ha
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1 14”

Figure 7. Concentration profile for Ha

Figure 5, 6 and 7 reveals the variation effects of  Magnetic Parameter Ha, on velocity,
temperature and concentration profile respectively. It is obvious from the figure 5 as expected that
the velocity distribution across the boundary layer decreases with the increase in Ha. This
obvious decrease is true due to the fact that increase in Magnetic field brings about an opposing
force to the flow called Lorentz force which has tendency to resist motion of fluid and decrease
the momentum boundary layer. However, increase in Ha as well results in frictional heating and
increase the fluid temperature, magnitude of the local skin-friction, plate surface temperature and
the concentration of the fluid while the Nusselt and Sherwood numbers decrease (See Fig.(6-7)
and Table 2). Note that the thickness of the thermal and concentration boundary layer improve as
the fluid temperature and its concentration increase.

Figure 8. Velocity profile for Gr
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Figure 11. Velocity profile for Gc
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Figure 12. Temperature profile for Gc
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Figure 13. Concentration profile for Gc

Figures (8-13) illustrate the influence of thermal Grashof and Solutal Grashof numbers on
velocity, temperature, and concentration profiles. The thermal Grashof number (Gr) signifies the
relative importance of buoyancy force to the viscous hydrodynamic force within the boundary
layer while the solutal Grashof number (Gc¢) defines the ratio of the species buoyancy force to the
viscous hydrodynamic force. It can be seen from the figures 8 and 11, that increase in (Gr,Gc)
gives rise to the fluid velocity within the boundary layer and suddenly fall monotonically to the
free stream zero value far away from the plate surface agreeing with the far field boundary
conditions which inturns increases the thickness of momentum boundary layer (See fig.8 and
fig.11). It is interesting to note that the positive values of (Gr,Gc) correspond to the cooling of the
plate as the fluid Temperature, Plate Surface Temperature and the fluid concentration decrease
which inturns deteriorate the thickness of thermal and concentration boundary layers as shown in
fig.(9-10), fig.(12-13). The Local Skin Friction, Nusselt number and Sherwood number increase
with the increase in (Gr,Gc) (see table 2).
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Figure 16. Concentration profile for Pr
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Figures (14-16), depicts the influence of Prandtl number Pr on the velocity, temperature and
concentration profiles respectively. Prandtl number Pr is a dimensionaless number,
approximating the ratio of momentum diffusivity to thermal diffusivity. Increase in Pr as a result
of low thermal diffusivity results in an increase in magnitude of local skin-friction, Nusselt
number with a reverse phenomenon on Plate Surface Temperature and Sherwood number as
shown in table 2. It can be seen from the figure that increase in Pr leads to a fall in velocity field
and rapid decrease in the thermal boundary layer thickness which inturns lowers the average
temperature across the boundary layer. The main reason is that, the smaller values of Pr are
equivalent to increase in the thermal conductivity. This however, enable the heat to diffuse away
from the heated surface more rapidly than the higher values.

Table 2. Numerical values of the Skin-friction coefficient, Local Nusselt number, Local
Sherwood number and plate surface temperature

Ha Gr Gc Bi Ec Q Pr Sc Ra f"(0) —6'(0) 6(0) —@'(0)

0.1 01 0.1 01 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
05 01 0.1 01 0.1 0.010.72 0.62 0.7 —0.686464 0.060864 0.391360 0.294033
| 1.0 0101 01 0.1 001072 062 0.7 ~0.969066 0.057813 0421873 0.260816
0.1 01 01 0.1 0.1 0.01 0.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
0.1 05 0.1 01 0.1 0.01 0.72 0.62 0.7 —0.188995 0.066264 0.337357 0.372221
0.4 10_04 01 0.1 001072 062_0.7 ~0.000484 0.067937. 0.320633 _0.402252_
01 01 01 01 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
0.1 01 05 01 01 0.01 0.72 0.62 0.7 —0.001613 0.067242 0.327584 0.385357
0.4 01 10 0.1 0.1 001072 062_0.7 _0387627 0.068519 0314813 0.314813_
01 01 01 0.1 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
01 01 01 05 0.1 0.01 072 062 0.7 —0.316811 0.134555 0.730889 0.350223
10401 01 10 0.1 001072 062 0.7 ~0301308 0.156786 0.843214 0.353403_
0.1 01 01 0.1 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
01 01 01 0.1 1.0 0.01 0.72 0.62 0.7 —0.347715 0.050729 0.492712 0.343464
040101 01 3.0 001072 062_0.7 —~0.299783 0.024012_0.759877_0.353974 _
0.1 01 01 01 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
0.1 01 01 0.1 0.1 0.050.72 0.62 0.7 —0.362516 0.060245 0.397553 0.340405
1040101 01 01 01 072 062 07 —0348882 0.053510 0.464897 0.342695_
0.1 01 01 0.1 0.1 0.01 0.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
01 01 01 01 0.1 0.01 1.0 0.62 0.7 —0.378412 0.067350 0.326497 0.337293
0.4 0101 01 0.1 00130 06207 —0.402666 0.078508 0.214917 0.331771_
0.1 01 01 0.1 0.1 0.01 072 0.24 0.7-0.332171 0.064993 0.350075 0.196666
0.1 01 01 0.1 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
10401 01 01 01 001072 078_07 —0380707 0.064110 0.358901 0.391494 _
01 01 01 01 0.1 0.010.72 0.62 0.7 —0.370788 0.064308 0.356923 0.338928
0.1 01 01 0.1 0.1 0.01 0.72 0.62 2.0 —0.383342 0.069306 0.306937 0.336197

010101 01 01 0.010.72 0.62 4.0 —0.388778 0.071622 0.283778 0.334993
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Figure 17. Velocity profile for Sc
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Figure 19. Concentration profile for Sc
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Figures (17-19) present the effect of Schmidt number Sc, on velocity, temperature and
concentration profiles. The graphical results reviews that increase in Sc, decrease the velocity
distribution and concentration within the boundary layer with an improve phenomenon on fluid
temperature. Also from table2, increase in Schmidt number Sc, as a result of low molecular
diffusivity leads to an increase in the magnitude of Local Skin Friction, Sherwood number and
Plate Surface Temperature but a decreases in Nusselt number as shown in table 2. Schmidt
number measure the effectiveness of Momentum and Mass transport by diffusion in
hydrodynamic boundary layers. An increase in Sc leads to a reduction in diffusion properties of
the fluid and the concentration boundary layer becomes thinner than the velocity boundary layer
thickness.

Figures (20-22) observe the influence of Heat Source Q on velocity, temperature and
concentration profiles. As expected, the presence of heat source is to enhance the rate of heat
transport to the flow which inturns overshoot the fluid temperature and increase the fluid velocity
within the boundary layer while the concentration profile decrease with little effect that can
hardly be seen. Moreover, the magnitude of local Skin Friction and Nusselt number decrease
while Sherwood number and Plate Surface Temperature increase owning to an increasing value of
Q (see table 2)

Figure 20. Velocity profile for Q
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15

Figure 22. Concentration profile for Q

Figures (23-25) depict the effect of Eckert number on velocity, temperature and concentration
profiles across the boundary layer. The Eckert number expresses the relationship between the
kinetic energy of the flow and the enthalpy. As shown in table 2, the magnitude of local Skin
Friction, Nusselt number decrease while the Plate Surface Temperature and the Sherwood number
increase with the increase in Ec. Eckert number exhibits the conversion of kinetic energy into
internal energy by work done against the viscous fluid stresses and its positive values correspond
to the cooling of the plate which implies loss of heat from the plate to the fluid. However, the
greater viscous dissipative heat give rise to velocity and temperature profiles but a reduction on
concentration profile.
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Figure 24. Temperature profile for Ec
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Figure 25. Concentration profile for Ec
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Figure 26. Velocity profile for Ra
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Figure 27. Temperature profile for Ra

Figure 28. Concentration profile for Ra
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Figures (26-28) presents the influence of Radiation Parameter Ra on velocity, temperature
and concentration profiles respectively. Inflation in radiation parameter (Ra) slightly diminishes
the velocity distribution with an opposite result in fluid concentration. However, the thermal
condition deteriorates with the increase in Ra which in turns pioneer the decrease in thermal
boundary layer thickness. This quantitatively agreed with the expectation as increase in Ra
(See Ra = %) contributes to the falling of radiation absorptivity K* while the enhancement in

0

radiative heat flux ‘;—';’ improves as K* reduces the rate of radiative heat transfer to the fluid that

consequently improve the fluid temperature. Also, increase in Ra leads to a increase in magnitude
of Local Skin Friction and Nusselt number with a reverse phenomenon on Plate Surface
Temperature and Sherwood number. This result is in agreement with Stanford and Sandile (2009).
The effect of Thermal Radiation becomes more significant as Ra = 0.1 but no effect as Ra —
o or Ra = oo.

)
1.0

I
Figure 29. Velocity profile for Bi
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Figure 31. Concentration profile for Bi

Figures (29-31) show that the velocity and temperature profiles increases while concentration
profile decreases with little effect, on the increase in the Convective Heat parameter Bi. In
addition, the magnitude of Local Skin-Friction decreases while the Nusselt number, Sherwood
number and Plate Surface Temperature increase on the increase in Bi as shown in table 2. This
was due to the fact that the left surface of the plate is exposing to the hot fluid thereby causing the
right surface to be lighter and flow faster.
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6. CONCLUSION

This study has vast application in industries and engineering disciplines in understanding the
dynamic flowing phenomenon which is a major language in science and technology such as
cooling of nuclear reactors, cooling of electronic components and enhanced oil recovery e.t.c. In
this present investigation, an analysis is made to study heat and mass transfer in hydromagnetic
boundary layer flow over a moving vertical plate with convective boundary condition in the
presence of thermal radiation. The resulting partial differential equations which describe the
problem are transformed to dimensionless equations using Similarity method with the
corresponding dimensionless variables. We then solve the equations by Homotopy Analysis
Method and the results are discussed through graphs and tables for different values of embedding
parameters and the following conclusion are drawn from the results obtained.

» Cooling problem is guaranteed with the positive values of (Gr, Gc) which is often
encountered in engineering application such as cooling of electronic component and nuclear
reactors.

» The Nusselt number increased as the values of Prandtl number, radiation parameter, and
convective heat parameter increase but decrease with the increase in Schmidt number and viscous
dissipation

» The momentum boundary layer thickness decrease while the thermal and concentration
boundary layers thickness increase on the increase in the magnetic parameter.

» An increase in viscous dissipation parameter enhanced the velocity and temperature
profiles with a reverse phenomenon on concentration profile.

» Higher values of radiation parameter Ra, pioneer the dominance of conduction over
radiation and consequently depressed the thermal boundary layer thickness.
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