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ABSTRACT 

 

The degree-based graph invariants are parameters defined by degrees of vertices. A graph is regular if all of 

its vertices have the same degree. Otherwise a graph is irregular. To measure how irregular a graph is, graph 

topological indices were proposed including the irregularity of a graph, total irregularity of a graph, and the 

variance of the vertex degrees. In this paper, the above mentioned irregularity measures for Mycielski 
constructions of any underlying graph are considered and exact formulae are derived. 

Keywords: Irregularity of a graph, total irregularity of a graph, variance of the vertex degrees, Mycielski 

construction. 
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1. INTRODUCTION 

 

Let G  be a simple undirected graph with vertex set V  and edge set E . The order of G  is 

the number of vertices in G . If V n  and ,E m  we say that G  is an  ,n m -graph. 

The open neighborhood of a vertex v  in a graph ,G  denoted by   ,GN v  is the set of all 

vertices of G  which are adjacent to v . The degree of a vertex v  in ,G  denoted by  Gd v  is 

the cardinality of  GN v . A graph G  is regular if all of its vertices have the same degree, 

otherwise it is irregular. 

Graph theoretical methods are all used in the characterization of molecular structure and 

prediction of properties, especially in chemical graph theory. Many of the problems, especially in 

computer network design can be easily handled if the related graphs are regular or close to 

regular. It is of interest to measure the irregularity of chemical graphs both for descriptive 

purposes and for QSAR/QSPR studies. Therefore, it is of great importance to know how irregular 

a given graph is in many applications and problems such as analyzing the structure of 

deterministic and random networks and systems occurring in chemistry, biology and social 

networks [6,7]. For that purpose, several graph topological indices have been proposed. 
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Irregularity me asures are expected to be of practical value in QSAR/QSPR studies. Among the 

most investigated ones are the irregularity of a graph introduced by Albertson [1], the total 

irregularity of a graph [2], and the variance of vertex degrees [3]. 

The irregularity of a graph can be defined by different graph topological indices. In this paper, 

three graph topological indices that quantify the irregularity of a graph are considered. The 

irregularities of graphs are investigated with respect to the irregularity of a graph, the total 

irregularity of a graph, and the variance of the vertex degrees. It is known that these irregularity 

measures are not always compatible. 

The three irregularity measures of interest in this paper are presented next. 

Albertson [1] defines the imbalance of an edge e uv E   as    G Gd u d v  and the 

irregularity of G  as 
 

     
  G Guv E G

irr G d u d v


  . 

 

Upper bounds on irregularity for bipartite graphs, triangle-free graphs, and a sharp upper 

bound for trees were presented in [1]. For general graphs with n  vertices, Albertson [1] has 

obtained an asymptotically tight upper bound on the irregularity, and in [18], for general graphs 

with n  vertices a sharp upper bound was presented. The graphs with maximal irregularity were 

characterized in [8]. 

In [2], a new measure of irregularity, so-called the total irregularity, was recently defined as  
 

     
 ,

1

2
t G Gu v V G

irr G d u d v


  . 

 

The upper bound of the total irregularity among all graphs was obtained in [2], and it was 

shown that the star graph is the tree with maximal total irregularity among all trees. In [9], the 

unicyclic graphs with maximal total irregularity among all unicyclic graphs were determined. The 

bicyclic graphs with maximal total irregularity among all bicyclic graphs were characterized in 

[10]. In [11], the graph with the minimal, the second minimal, and the third minimal total 

irregularity among trees, unicyclic or bicyclic graphs was characterized.  

The relation between  irr G  and  tirr G  for a connected graph G  was derived in [12]. 

 tirr G  can be computed directly from the sequence of the vertex degrees of G .  tirr G  

has a property that the graphs with the same degree sequences have the same total irregularity, 

while  irr G  does not have. The most irregular graphs with respect to  irr G  are graphs 

that have only two degrees. The most irregular graphs with respect to  tirr G  are graphs with 

maximal number of different vertex degrees [2]. 

A sequence of non-negative integers 1, , nd d  is a degree sequence, if there exists a graph 

G  with    1, , nV G v v  such that  i id v d . Let in  denote the number of vertices 

of degree i  for 1 1i n    and let 1, , nd d  denote the degree sequence of the graph ,G  

where in  is the number of vertices of degree i  for 1 1i n   . The variance  Var G  of 

the vertex degrees [3] of the graph G  is 
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 
2 21

2

2
1 1 1

1 1 1 2n n n

i i i

i i i

m
Var G d d n i

n n n n



  

   
     

  
   . 

 

Bell [3] characterized the most irregular graphs in some classes and obtained upper and lower 

bounds of  Var G  as functions of n  and m . 

These irregularity measures as well as other attempts to measure the irregularity of a graph 

were studied in several works [4,5,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23]. 

In [24], Mycielski developed a graph transformation that transforms a graph G  into a new 

graph  G  called Mycielskian of G . For a given graph G  with 

   1 2, , , nV V G v v v  , denote  1 2, , , nV v v v     to be the corresponding set of 

,V  the Mycielski graph  G  of G  is defined with vertex set consisting of the disjoint union 

    V G V V u    , and edge set 

         : :1i j i j iE G E G v v v v E G uv i n        . We call v  the twin 

of v  in   ,G  and vice versa, and call u  the root of  G .  

In Section 2, the irregularity, total irregularity, and the variance of the vertex degrees of 

Mycielski graphs are determined in terms of the same parameters over G . 
 

Remark 1.1. In [17], exact formulae are given for the irregularity, total irregularity, and the 

variance of the vertex degrees of Mycielskian of paths and cycles. Motivated from the results in 

[17], in this paper, exact general formulae are derived for those three irregularity measures of 

Mycielskian of any underlying graph G . 

 

2. MAIN RESULTS 

 

An obvious inference from the definition of  G , the order of  G  is 2 1n , and  
 

     d 2 ,i G iG
v d v


       d 1,i G iG

v d v


    and 
   d
G

u n


 . 

 

The vertex set of  G  can be partitioned into three subsets as  
 

     1 : ,1 ,i iV v V G v V G i n      

 

   2 : ,1 ,i iV v V G v V i n        and 

 

     3 :  is the root of V u V G u G   . 

 

The edge set of  G  can be partitioned into three subsets as  
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     1 : , ,E xy E G x y V G    

 

     2 : , ,E xy E G x V G y y V        and 

 

     3 : ,  is the root of E xy E G x x V y G      . 

 

Theorem 2.1. Let G  be  ,n m -graph. Then  
 

           
 
 1

1

2 1 2 2 1
j G i

j d vG i

n

G i G j

i u N v

irr G irr G n n m d v d u

 

 

         . 

 

Proof. By the definition of graph irregularity, it follows that  
 

          
          

i
G G G Guv E G xy E

irr G d u d v d x d y
   


 

      

for 1 3i  . 
 

The contribution of the edges in 1E  to   irr G  is given by 
 

          
1

1 G Gxy E
irr G d x d y

 



     

1

2 2G Gxy E
d x d y


   

   
1

2 G Gxy E
d x d y


     

 
2 G Gxy E G

d x d y


   2irr G . 

 

The contribution of the edges in 2E  to   irr G  is given by 
 

          
2

2 G Gxy E
irr G d x d y

 



       

2

2 G Gxy E
d x d y


   

    
2

2 1G Gxy E
d x d y


       

 
 1

1

2 1
j G i

j d vG i

n

G i G j

i u N v

d v d u

 

 

    . 

 

The contribution of the edges in 3E  to   irr G  is given by 
 

          
3

3 G Gxy E
irr G d x d y

 



     

3
Gxy E

d x n


 

 
3

1Gxy E
d x n


   . 

 

Under the constraints  0 1Gd x n     x V G   and 1,n   it holds that 

  1 0Gd x n   . Thus,  
 

    
3

3 1Gxy E
irr G n d x


    

1

1
n

G i

i

n d x


      
1

1
n

G i

i

n n d x


   . 
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By using the equality  
 

 2 ,Gv V G
d v E G


  we compute the summation as follows: 

 

    3 1 2irr G n n m    . 
 

The desired formula for   irr G  is obtained by summing the above three expressions. ■ 
 

Theorem 2.2. Let G  be  ,n m -graph. Then  
 

             
1 1 1

3 2 2 1 2

j i

n n n

t t G i G j G i

i j i

irr G irr G n n d v d v d u n



  

          . 

 

Proof. By the definition of graph total irregularity, it follows that  
 

          
1 , 3

,

1

2 i j

i j

t G Gu V v V
irr G d u d v

 


 

 
  . 

 

The contribution of the vertices in 
1V  to   tirr G  is given by 

 

          
 

1 1
1 3

,

1

2 i
i

t G Gu V v V
irr G d u d v

 


 

 
  . 

       
1,

1

2
G Gu v V

d u d v
 

        
1 1

1

2
j i

n n

i jG G
i j

d v d v
 



 

 

   
1 1

1
2 2

2
j i

n n

G i G j

i j

d v d v



 

   

   
1 1

j i

n n

G i G j

i j

d v d v



 

     
 , G Gu v V G

d u d v


   2 tirr G .         (1) 

 

       
1 2,

1

2
G Gu V v V

d u d v
  

        
1 1

1

2

n n

i jG G
i j

d v d v
 

 

   

    
1 1

1
2 1

2

n n

G i G j

i j

d v d v
 

  

       
1 1 1

1 1
1 2 1

2 2
j i

n n n

G i G i G j

i i j

d v d v d v



  

       

    
1 1

1
2 1

2 2
j i

n n

G i G j

i j

n
m d v d v



 

     .                                                  (2) 
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       
1 3,

1

2
G Gu V v V

d u d v
  

  
1

1
2

2

n

G i

i

d u n


  .                        (3) 

 

From (1), (2), and (3), we get 
 

           
1

1 1 1

1 1
2 2 1 2

2 2 2
j i

n n n

t t G i G j G i

i j i

n
irr G irr G m d v d v d u n



  

         . 

 

The contribution of the vertices in 
2V  to   tirr G  is given by 

 

          
 

2 2
1 3

,

1

2 i
i

t G Gu V v V
irr G d u d v

 


 

 
  . 

 

For the case 
2u V , 1v V , we receive the same equality as in (2). 

 

       
2,

1

2
G Gu v V

d u d v
 

        
1 1

1

2
j i

n n

i jG G
i j

d u d v
 



 

    

     
1 1

1
1 1

2
j i

n n

G i G j

i j

d u d v



 

       
1 1

1

2
j i

n n

G i G j

i j

d u d v



 

 

   
 ,

1

2
G Gu v V G

d u d v


   

 tirr G .                                                                                      (4) 
 

       
2 3,

1

2
G Gu V v V

d u d v
  

    
1

1

2

n

iG
i

d u n




 

  
1

1
1

2

n

G i

i

d u n


   . 

 

Under the constraint  0 1Gd v n      ,v V G   we have the equality 

  1 1 0Gn d v n      yielding 
 

      
1 1

1 1
1 1 1

2 2 2

n n

G i G i

i i

n
d u n n d u n m

 

         .                 (5) 

 

Summing (2), (4), and (5), we receive 
 

         
2

1 1

1
1 2 1

2 2
j i

n n

t t G i G j

i j

n
irr G irr G n d v d v



 

 
      

 
 . 
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Similarly, the contribution of the root vertex to   tirr G  is given by  
 

          
 

3 3
1 2

,

1

2 i
i

t G Gu V v V
irr G d u d v

 


 

 
  . 

 

For the two necessary cases 
3u V , 

1v V  and 
3u V , 

2v V , the same equalities as in 

(3) and (5) are obtained yielding  
 

      
3

1

1
1 2

2 2

n

t G i

i

n
irr G n m d u n



     . 

 

The desired equality for   tirr G  is obtained by summing the above three 

contributions. ■ 
 

Theorem 2.3. Let G  be  ,n m -graph. Then  
 

              
2 2

12 1 5 4 1 4 3 2 1Var G n M G m n n m n n         . 

 

Proof. By the definition of the variance of vertex degrees of a graph, we receive 
 

  
     

 
 

   
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By the definition of the first Zagreb index [25], that is    
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Thus, the proof of the theorem holds. ■ 
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