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ABSTRACT 

 

In this study, we attempt to investigate the influence of the plate geometry on a buckling delamination of a 

PZT/Metal/PZT sandwich rectangular thick plate with lengths ℓ1 and ℓ3, and with thickness h.  We assume that 

between the face and core layers there are two parallel interface-band cracks. We also assume that the 

considered thick plate is mechanically simply supported and unelectroded with vanishing normal electric 

displacement on its four lateral edges and, ideal contact conditions are satisfied between the interfaces of the 

contact layers.  This plate is compressed only two lateral surfaces by the uniform uniaxial normal forces and 

there are neither mechanically nor electrically forces act on the upper and lower surfaces and also cracks’ 

surfaces of the rectangular sandwich plate. The considered boundary value problems is modeled 

mathematically within the scope of the exact geometrically nonlinear equations of the theory of electro-

elasticity within the scope of the piecewise homogeneous body model and is solved numerically by using 3D-

FEM. The influence of various material and geometric parameters as well as the couple effect between the 

electrical and the mechanical fields on the buckling delamination of the rectangular thick plate is analyzed and 

discussed.   

Keywords: Piezoelectric sandwich rectangular thick plate, buckling-delamination, FEM. 

 

 

1. INTRODUCTION 

 

Elastic materials that have an interaction between the mechanical and the electrical fields are 

called electro-elastic materials. If this couple effect between these two fields is linear, these 

electro-elastic materials are specifically called piezoelectric materials which were discovered 

experimentally by the Curie brothers in the 1880s. These materials exhibit electrical polarization 

when mechanical force applied or, conversely, exhibit mechanical deformation when placed in 

the electrical field. According to favorable properties of these materials, they are used in many 

engineering applications, for example, sensors used to detect very small/sensitive effects (the 

change of pressure, current, temperature etc.), piezoelectric generator (electric harvesting) and so 
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on. These materials that widely used in many engineering applications, are the subjects of many 

theoretical and experimental scientific researches. The most common usage of piezoelectric 

materials (PZT) in th e component of the structures is as plates that is agglutinated to the base 

component. As a result of this process, some non-stick surfaces such as crack-like can occur 

between the PZT plate and the base construction due to various technological processes or 

inconvenient conditions. It is evident that these crack-like voids significantly affect strength of the 

structural elements under various external effects during their usage life, and cause unacceptable 

experiences such as fracture and buckling delamination of the mentioned structural elements. 

Some theoretical researches made on these problems are summarized below. 

In References [1, 2] the buckling delamination problems were modelled mathematically in the 

scope of the three dimensional geometrically nonlinear exact equations of the theory of 

viscoelasticity, and studied for the elastic and/or viscoelastic rectangular thick plates with 

rectangular cracks under some boundary and loading conditions.  These mathematical models and 

boundary value problems arising within selected boundary conditions were solved numerically by 

means of three-dimensional finite element modeling (3D-FEM) and critical parameter values 

were determined for various materials and geometrical parameters.  

In the papers [3, 4] the buckling-delamination problems around the interface cracks between 

the layers of the PZT/Metal/PZT sandwich plate (for a plate-strip [3] in the plane-strain state (2D) 

and for a rectangular thick plate in 3D [4]) under given boundary and loading conditions are 

studied. In these studies, the effects of various geometrical and material parameters and also 

interaction between the electrical and the mechanical fields on the critical buckling-delamination 

forces are modeled and studied in the context of the nonlinear exact equations of the electro-

elasticity theory and the piecewise homogeneous body model. According to the numerical results 

of this study, it is established that the influence of the couple effects between the mechanical and 

the electrical fields on the values of the critical buckling delamination force is significant. 

It should be noted that the all numerical investigations carried out in the paper [4] are made 

only for a fixed value of the geometrical parameter which characterizes the ratio of the plate 

length in the 
1

Ox  and 
3

Ox   axes (Fig. 1). It is also should be noted that namely through this 

parameter it is possible to estimate the influence of the three-dimensionality of the problem on the 

critical values of the external compressive force. Taking this situation into consideration in the 

present paper the numerical investigations started in the paper [4] is continued for the various 

values of the aforementioned parameter.   

As in the paper [4], the investigations are made within the framework of the geometric 

nonlinear exact equations of the three-dimensional theory of electro-elasticity for piezoelectric 

materials and solved numerically by employing of the three-dimensional finite element 

formulation. All the algorithms and PC programs required for the numerical solutions are 

composed by the authors. Numerical results illustrated the influence of the aforementioned 

geometrical parameter on the critical values of the external forces are presented and discussed for 

various PZT materials and for the various values of the geometrical parameter characterizing the 

cracks’ length in the 
1

Ox axis direction. 

 

2. FORMULATION OF THE PROBLEMS 

 

Assume that the considered piezoelectric sandwich rectangular thick plate has ℓ1×h×ℓ3 

dimensions along the Ox1, Ox2 and Ox3 axes respectively and subjected to the uniform external 

compressive forces whose density is p as given in Fig.1a.   
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                                 (a)                                                                                (b) 

 

Figure 1. The geometry of the plate and the considered external forces; solution domain (a), one-

eighth of the region (b) 

 

Solution domain of the problem studied is  
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Here, Ω1, Ω2 and Ω3 represents bottom, middle and top layers, respectively;  ( )
L U

S S
 

represents the lower and upper surfaces of the band crack between the bottom and the middle 

(middle and top) layers. Governing field equations provided in these regions, for each rn-th 

(n=1,2,3) layer, are given below the framework of the three dimensional geometrically nonlinear 

exact equations of the electro-elasticity,  
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In (2) the following notation is use: Tjk is the component of the ordinary stress tensor; Mji is 

the component of Maxwell stress tensor; Di is the component of the electrical displacement 

vector; eikl is the piezoelectric constant; Skl is the component of Green strain tensor; εkl is the 

dielectric constant; Ek is the component of the electrical field vector; cijkl is the elastic constant 

and ϕ is the electric potential. Also ε0 is the permittivity of free space and 
j

i  is the Kronecker 

symbol. 
Assume that all the lateral surfaces of the considered plate are simply supported and with zero 

electrical potential and the plate is subjected to static external compressive forces only act on 

x1=0;ℓ1 ends. It is also assumed that the mechanical forces and electrical charges do not affect on 

the bottom/top and cracks’ surfaces of the plate. Accordingly, mathematical expressions of these 

boundary conditions can be formulated as follows, 
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0 / 2 / 21x x      l l l l l  and 
3 3

0 x  l , the contact conditions 

between the layers of sandwich plate are as follows, 
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                                           (5)               

 

The boundary value problem (1)-(4) represents the buckling delamination of a piezoelectric 

rectangular sandwich thick plate, whose face layers are made of piezoelectric material and the 

core layer is made of metal material and which has two parallel band cracks between its layers 

under uniformly distributed static external compressive forces acting at two opposite lateral 

surfaces. This problem is a nonlinear one and the solution to this problem is reduced to the 

solution of series linear boundary value problems as a result of linearization procedures [5].  

This reducing is based on the assumption, according to which, the edges of the band cracks 

have an insignificant imperfections and the degree of this imperfections is characterized through 
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the infinitesimal parameter .  As in the references [1-5], the sought quantities are presented in 

power series form with respect to this small parameter: 
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                                                         (6) 

 

Substituting the expression (5) into the Eqs. (2)-(4) and doing some lengthly mathematical 

manupulations, solution to the (1)-(4) nonlinear boundary value problem is reduced to the 

solutions of the series linear boundary value problems qth of which is obtained by grouping of 

coefficient of the power εq. The problems obtained for the cases where q=0,1,2,… are named as 

the zeroths, first, second…. approximations, respectively. As in the references [1-5] it is 

established that for the buckling delamination problems it is enough to use only the zeroth and the 

first approximations in the foregoing series, therefore here we also use only the zeroth and first 

approximations for determination of the critical values of the external forces. The solution to the 

zeroth approximation can be obtained analytically within the scope of the certain assumptions [3, 

4]. The solution of the boundary value problem related to the first approximation will be obtained 

numerically with the help of three-dimensional finite element modeling.  

According to the FEM modelling, the solution domain is divided into a finite number of finite 

elements, i.e. the rectangular prism-shaped finite elements and the displacements in the direction 

of the three axes and the electric potential ϕ are selected as unknowns at each node. Moreover, 

for the finite element modeling, the following functional Π that expresses the total electro-

mechanical energy accumulated in the considered plate [4,6] is used, 
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With the help of this functional and the known Ritz technique, the solution to the first 

approximation is reduced to the solution of the corresponding algebraic equations obtained from 

the first variation of the functional (6). After solution to this system of algebraic equations the 

values of the critical forces are determined from the initial imperfection criterion detailed in the 

references [1-5].  

 

3. NUMERICAL RESULTS 

 

Before analyzing of the numerical results obtained from the solution of the problem under 

consideration, we test the algorithms and programs composed by the authors and used under 

obtaining of the present results with the known ones given in the literature. For this purpose, we 

consider the results illustrated in Table I, which show the critical forces for the isotropic 

rectangular thick plate with band cracks obtained for various NDOF under (ℓ0/ℓ1=0.5, h/ℓ1=0.15). 

Note that in this table Nx, Ny and Nz indicate the number of the finite elements along the directions 

Ox1, Ox2 and Ox3 respectively and according to symmetry properties of the problem, numerical 

calculations are made in the 1/8 part of the solution domain (Fig. 1b). Note that in Table I it is 

also given the corresponding ones obtained in the paper [2]. The comparison of the present result 

with those obtained in the paper [2] illustrate again the trustiness of the present algorithm and PC 

programs. Moreover, the comparison of the results obtained for various values of the NDOF 

shows the convergence of the used algorithm.   

The mechanical and electro-mechanical properties of the different PZT materials which are 

used for obtaining the critical forces are presented in Table II. At the same time under obtaining 
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these results two different core materials (Steel (shortly St) and Aluminum (shortly Al)) are used. 

The modulus of elasticity and Poisson ratio for these materials are taken as ESt=197×109 Pa, 

νSt=0.2722, EAl=70×109 Pa and νAl=0.3. 

Tables III and IV show the values of the dimensionless critical forces
4

44

PZT

cr
p C


and 

5

44

PZT H

cr
p C


   for the PZT-4 and PZT-5H piezoelectric materials, respectively, in the case 

where the material of the core layer is Al. In these tables the mentioned results are presented for 

various cracks length (ℓ0) and for various values of the parameter γ (=ℓ3/ℓ1) (Figure 1) in the cases 

where eij=εij=0 (numerator) and eij≠0, εij≠0 (denominator). It follows from these numerical results 

that the values of critical forces with γ close to a certain limit value related to the corresponding 

plane-strain state and considered in [3].  

An important effect in this study is the effect of the interaction between the electrical and the 

mechanical fields on the critical parameters. This effects can be estimated through the difference 

of between the critical values obtained in the cases eij=εij=0 (Case 1) and eij≠0, εij≠0 (Case 2). 

According to the analyses of the mentioned difference, it is obtained that, the critical forces 

related to Case 2 are always greater than that obtained in Case 1. Note that in the last column in 

these tables, the critical forces regarding the stability loss of the whole plate are given. 
 

Table I. /
2(1 )

cr

E
p  






 
 
 

 critical values of buckling delamination force 

( , , )N N Nx y z  NDOF 
Fh  

0.025 0.0375 0.05 

(12,40,40) 13188 0.0124 0.0222 0.0340 

(24,40,40) 23772 0.0123 0.0220 0.0339 

(24,60,40) 35112 0.0123 0.0219 0.0338 

(24,100,40) 57792 0.0122 0.0219 0.0338 

(24,100,60) 85312 0.0122 0.0218 0.0337 

(24,100,100) 140352 0.0120 0.0217 0.0335 

Akbarov vd. (2010)[2]   0.0120 0.0217 0.0336 

 

Table II. The mechanical, piezoelectric and dielectric constants of some piezoelectric materials 
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PZT-4 

 
13.9 7.78 7.40 11.5 2.56 3.06 -5.2 15.1 12.7 0.646 0.562 

PZT-5H 

 
12.6 7.91 8.39 11.7 2.30 2.35 -6.5 23.3 17.0 1.505 1.302 

BaTiO3 

 
15.0 6.53 6.62 14.6 4.39 4.24 -4.3 17.5 11.4 0.987 1.116 

 1010 Pa
 
 2/C m

 
 

810 /C Vm
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Table III. The 
4

44

PZT

cr
p C


 values for different 3 1( )   and 0 1/  values of  

PZT-4/Aluminum/PZT-4 sandwich rectangular thick plate 
0

0, 0

ij ij

ij ij

e

e





 

 

 
 
 

  

3 1/   0 1/  

0.0 0.2 0.3 0.4 0.5 0.6 0.7 

1 0.0335

0.0385
 

0.1051

0.1252
 
0.0656

0.0766
 
0.0450

0.0523
 
0.0334

0.0389
 

0.0263

0.0310
 
0.0217

0.0262
 

3 0.0294

0.0343
 
0.1029

0.1217
 
0.0626

0.0721
 
0.0415

0.0471
 
0.0293

0.0343
 

0.0218

0.0254
 
0.0168

0.0208
 

6 0.0267

0.0312
 
0.0955

0.1114
 
0.0589

0.0686
 
0.0382

0.0446
 
0.0270

0.0315
 
0.0194

0.0229
 
0.0144

0.0179
 

Akbarov, 

Yahnioglu (2013) 

[3] 

0.0260

0.0300
 
0.0900

0.1100
 

0.0575

0.0660
 

0.0375

0.0430
 
0.0260

0.0300
 
0.0190

0.0220
 
0.0140

0.0170
 

 

An increase of the critical forces as a result of the piezoelectricity of the face layers of the 

plate is explained with the "stiffening effect". That is, since a part of the applied compressive 

force is spent to polarization in the structure of the material, hence the critical value of buckling 

delamination force increases. Furthermore, as γ and the crack length (ℓ0) increases, the values of 

the critical external force decrease, and these values approach a certain asymptote as   . 

Table V shows the values of the critical forces obtained also for the PZT-5H/Al/PZT-5H plate 

under various ℓ0 and hF in the case where h/ℓ1=0.2 and ℓ3= ℓ1 (γ=1). As can be seen from this 

table that the critical forces increase with hF and decrease with the ℓ0. Furthermore, the difference 

between the critical external compressive forces obtained in the cases eij≠0, εij≠0  and eij=εij=0 

also increases with the PZT layers thickness (hF). There exists such a value of ℓ0/ℓ1 (denoted by 

(ℓ0/ℓ1)*) after which, i.e. under (ℓ0/ℓ1)*⁄ < ℓ0/ℓ1 the local buckling delamination around the 

interface cracks takes place at an earlier stage of the loading than the buckling of the whole plate. 

But in the cases where (ℓ0/ℓ1)*⁄ > ℓ0/ℓ1 the buckling of the whole plate takes place earlier than the 

local buckling delamination around the interface cracks. According to the author's point of view, 

critical buckling force is closely related the ratio between the length and the thickness of the 

buckling part. Hence, for small size of the crack length, if the ratio between the length of the 

crack and the thickness of the PZT layer is greater than the ratio of corresponding size of the 

whole plate then critical buckling force of the whole plate is less than that for the buckling 

delamination of this plate.  
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Table IV. The 
5

44
PZT H

crp C


 values of the PZT-5H/Aluminum/PZT-5H sandwich rectangular 

 thick plate for different ( )3 1   and /0 1
 values 

0

0, 0

eij ij

eij ij
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 
  
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3 1/   
0 1/  

0.2 0.3 0.4 0.5 0.7 

1 0.3301

0.4098
 

0.2000

0.2502
 

0.1345

0.1708
 

0.0982

0.1274
 

0.0628

0.0868
 

3 0.3240

0.3981
 

0.1918

0.2347
 

0.1249

0.1527
 

0.0872

0.1068
 

0.0493

0.0607
 

5 0.3235

0.3971
 

0.1904

0.2336
 

0.1235

0.1514
 

0.0858

0.1054
 

0.0479

0.0593
 

7 0.3232

0.3968
 

0.1899

0.2332
 

0.1230

0.1509
 

0.0853

0.1049
 

0.0474

0.0588
 

9 0.3231

0.3965
 

0.1896

0.2329
 

0.1227

0.1506
 

0.0850

0.1046
 

0.0471

0.0585
 

 

Table V. The 
5

44
PZT H

crp C


 values of the PZT-5H/Aluminum/PZT-5H sandwich rectangular  

thick plate for different 
Fh  and 0l values 

0

0, 0

ij ij

ij ij

e

e





 
 
 
 

 

 
  

 

 

1/Fh  
0 1/  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

0.0166 0.1280

0.1820
 0.3694

0.3758
 0.1154

0.1213
 0.0592

0.0658
 

0.0351

0.0354
 0.0239

0.0242
 

0.0176

0.0182
 0.0140

0.0160
 

0.0333 0.1321

0.1856
 0.5203

0.5946
 0.2286

0.2604
 0.1246

0.1432
 

0.0790

0.0926
 0.0556

0.0672
 0.0422

0.0529
 0.0339

0.0451
 

0.0500 0.1398

0.1902
 0.6097

0.7401
 0.3301

0.4098
 0.2000

0.2502
 0.1345

0.1708
 0.0982

0.1274
 

0.0765

0.1023
 0.0628

0.0868
 

0.0666 0.1440

0.1960
 0.6729

0.8701
 0.4099

0.5441
 

0.2703

0.3606
 0.1920

0.2582
 0.1453

0.1979
 

0.1160

0.1611
 0.0972

0.1380
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Figure 2. The surface graph of the PZT-5H/Aluminum/PZT-5H sandwich rectangular thick plate 

for 
5

44/ 0.2604
PZT H

p c


  in the section 2 0F Cx h h


    

 

In Figure 2, the crack edge surface displacement graph is given for the PZT-5H/Al/PZT-5H 

plate in the case where h/ℓ1=0.2; hF/ℓ1=0.0333; ℓ0/ℓ1=0.2 and ℓ3= ℓ1. Accordingly, as the external 

compressive force approaches to its critical value, the values of the displacements of the surface 

increase and grow very much. It is also seen that as the external pressure force increases, the 

crack surface form is in agreement with the form of the initial imperfection of the cracks’ edge 

surface.  

In Figure 3 and Figure 4, the numerical results obtained for different PZT face layers 

materials in cases where the core layer is Al (Figure 3) and St (Figure 4) are given. In these 

figures straight (dashed) lines are obtained in the case where eij≠0, εij≠0   (in the case where 

eij=εij=0). Also these figures show that the following relationship is provided for the critical 

values obtained for different PZT materials:   
 

5 4 3
44 44 44/ / / .

BaTiOPZT H PZT
cr cr crp c p c p c                                                                                (8) 

 

 
 

Figure 3. The critical buckling delamination force values of the PZT/Aluminum/PZT sandwich 

rectangular thick plate for the different PZT materials and ℓ0 crack lengths 
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Figure 4.  The critical buckling delamination force values of the PZT/Steel/PZT sandwich 

rectangular thick plate for the different PZT materials and ℓ0 crack lengths 
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