

Publications Prepared for the 13th Algebraic Hyperstructures and its Applications Conferences AHA 2017

Research Article

AN INTRODUCTION TO ZERO-DIVISOR GRAPHS OF A COMMUTATIVE MULTIPLICATIVE HYPERRING

Zahra SOLTANI¹, Reza AMERI*², Yahya TALEBI-ROSTAMI³

Received: 01.12.2017 Accepted: 16.04.2018

ABSTRACT

The purpose of this paper is the study of zero-divisor graphs of a commutative multiplicative hyperrings, as a generalization of commutative rings. In this regards we consider a commutative multiplicative hyperring (R, +, o), where (R, +) is an abelian group, (R, +) is a semihypergroup and for all $a, b, c \in R$, $a \circ (b + c) \subseteq R$ $a \circ b + a \circ c$ and $(a + b) \circ c \subseteq a \circ b + a \circ c$. For $a \in R$ a nonzero element $a \in R$ is said to be a zero-divisor of a, if $0 \in a \circ b$ and the set of zero-divisors of R is denoted by Z(R). We associative to R a zero-divisor graph $\Gamma(R)$, whose vertices of $\Gamma(R)$ are the elements of $Z(R)^* (= Z(R) \setminus \{0\})$ and two distinct vertices of $\Gamma(R)$ are adjacent if they were in Z(R). Finally, we obtain some properties of $\Gamma(R)$ and compare some of its properties to the zero-divisor graph of a classical commutative ring and show that almost all properties of zero-divisor graphs of a commutative ring can be extend to $\Gamma(R)$ while R is a strongly distributive multiplicative hyperring.

Keywords: Multiplicative hyperring, zero-divisor graph, strongly distributive.

1. INTRODUCTION

The concept of the zero-divisor graph of a ring was raised by I. Beck when discussing the coloring of a commutative ring in [3] for the first time. Later D. F. Anderson and P. S. Livingston introduced the zero-divisor graph of a unitary commutative ring R, denoted by $\Gamma(R)$ in [2]. They considered the set of nonzero zero-divisor of as a vertice of $\Gamma(R)$ and assumed that two distinct vertices x and y are adjacent if and only if xy = 0. Subsequently, they proved that if R is a finite ring, then $\Gamma(R)$ is finite and connected and any two vertices can be joined by less than four edges. In particular, they were determined when $\Gamma(R)$ is a complete graph and a star graph.

In this paper we create a connection between the concept of the zero-divisor graph of commutative rings and commutative multiplicative hyperrings and generalize some results and properties of zero-divisor graph of a commutative ring to the strongly distributive multiplicative

In this section we will list some definitions, notions and results about commutative hyperrings from some references.

¹Department of Mathematics, University of Mazandaran, Babolsar-IRAN

²School of Mathematics, University of Tehran, Tehran-IRAN; ORCID:0000-0001-5760-1788

³Department of Mathematics, University of Mazandaran, Babolsar-IRAN; ORCID:0000-0003-2311-4628

^{*} Corresponding Author: e-mail: rameri@ut.ac.ir, tel: +989122805056

Definition 1.1. Let H be a nonempt y set and $P^*(H)$ denotes the set of all of nonempty subsets of H. A hyperoperation o on H is a mapping $o: H \times H \to P^*(H)$. A nonempty set H together with a family of hyperoperartion is a hyperstructure. A hyperstructure (H, o) is a semihypergroup if for all $a, b, c \in H$, $(a \circ b) \circ c = a \circ (b \circ c)$. (Associativity axiom). A hyperstructure (H, o) is a quasihypergroup if for all $a \in H$, we have $a \circ H = H = H \circ a$. In the other words for all $a, b, c \in H$ there exist $x, y \in H$ such that $a \in x \circ b \cap b \circ y$ (Reproduction axiom).

Definition 1.2. A hyperstructure (H, o) which is the both semihypergroup and quasihypergroup is called a hypergroup.

Definition 1.3. A general hyperring is an algebraic hyperstructure (R, +, o) that satisfies the following axioms:

- (1) (R, +) is a hypergroup.
- (2) (R, o) is a semihypergroup.
- (3) For all $a, b, c \in R$, $a \circ (b + c) = a \circ b + a \circ c$ and $(a + b) \circ c = a \circ c + b \circ c$.

A hyperring (R,+,o) is commutative, if the both hyperoperations + and o are commutative. The hyperring R is unitary if there exists an element $u \in R$ such that for all $a \in R$, $a \circ u = u \circ a = \{a\}$.

Definition 1.4. The unitary commutative hyperring R is a hyperfield if for every non-zero element $a \in R$, there exists $b \in R$ such that $u \in a$ o b, where u is an unit element of R.

Definition 1.5. A commutative hyperring R is a strong hyperdomain if for all $a, b \in R$, if $0 \in a$ o b with $a \neq 0$ (or $b \neq 0$), then b = 0 (or a = 0). If a o $b = \{0\}$ implies a = 0 or b = 0, we will talk about hyperdomain. Obviously, every strong hyperdomain is a hyperdomain and every hyperfield is a strong hyperdomain.

Definition 1.6. A nonempty subset A of a hyperring (R, +, o) is subhyperring of R if (A, +, o) is itself a hyperring, under the restriction of hyperroperation + and o to A.

Definition 1.7. Let *A* is a subhyperring of a hyperring *R*. We say that *A* is a left (right) hyperideal of *R* if for all $r \in R$ and $a \in A$, $r \circ a \in A(a \circ r \in A)$. *A* is called a hyperideal if *A* is both a left and a right hyperideal. A hyperideal *P* of a commutative hyperring *R* is said to be prime if $P \neq R$ and for all $a, b \in R$, $a \circ b \subseteq P$ implies $a \in P$ or $b \in P$. A hyperideal *P* of *R* is said to be strong prime if $a \circ b \cap P \neq 0$ implies $a \in P \cap B \in P$.

Definition 1.8. A triple (R, +, o) is multiplicative if + be a classical commutative operation and o be a hyperoperation and following statements hold:

- (1) (R, +) is an abelian group.
- (2) (R, o) is a semihypergroup.
- (3) For all $a, b, c \in R$, $a \circ (b + c) \subseteq a \circ b + a \circ c$ and $(a + b) \circ c \subseteq a \circ c + b \circ c$.
- (4) For all $a, b \in R$, $a \circ (-b) = (-a) \circ b = -(a \circ b)$.

If in (3) equality hold, then R is a strongly distributive multiplicative hyperring (briefly, we say that R is a SDMH).

Definition 1.9. A nonempty subset S of a commutative multiplicative hyperring (R, +, o) is a subhyperring of R if (S, +, o) is a multiplicative hyperring. In other words, S is a subhyperring of R if (S, +) is a subgroup of (R, +) (i.e., $S - S \subseteq S$) and for all $r, s \in S$, $r \circ s \subseteq S$.

Definition 1.10. A nonempty subset I of a multiplicative hyperring (R, +, o) is a hyperideal if following axioms hold:

- (1) (I, +) is a subgroup of (R, +).
- $(2) \ (I \ o \ R) \cup (R \ o \ I) \subseteq \ I.$

By this definition clearly, every hyperideal is a subhyperring.

Let (R, +, o) be a multiplicative hyperring and I is a hyperideal of R. Let R/I be the set of all cosets of R with restrict to I, $R/I = \{a + I \mid a \in R\}$. We define a hyperoperation * on R/I by

$$(a+I)*(b+I) = \{c+I \mid c \in a \ o \ b\}.$$

Then (R/I, +, *) is a multiplicative hyperring, moreover if R is a SDMH, so is R/I.

Theorem 1.11. A strongly distributive hyperring (R, +, o) is a ring if and only if there exists $a, b \in R$, such that $|a \circ b| = 1$.

Proof. Corollary 4.1.6 [5]. □

Theorem 1.12. If I is a hyperideal of a commutative multiplicative hyperring (R, +, o), then for every element $a + I \in R/I$, we have |(a + I) * (0 + I)| = 1. In other words, if R is a SDMH, then R/I is a ring.

Proof. According to Theorem 4.3.5 [5] and Theorem 1.11. \Box

Theorem 1.13. Let (R, +, o) is a *SDMH*, then for all $a, b \in R$, we have:

- (1) $0 \in a \circ 0$ and $0 \in 0 \circ a$.
- (2) For all $x, y \in a \circ 0$, $x y \in a \circ 0$. (i.e., $a \circ 0$ is a subgroup of R.)
- (3) *a o b* is a cosets of 0 *o* 0.
- (4) 0 0 0 0 0 = 0 0 0.
- (5) For all $s \in 0$ o 0 and $r \in R$, $s \circ r = 0$ o 0.
- (6) If $0 \in a \circ b$ then $a \circ b = 0 \circ 0$.

Proof. (1) $0 \circ a = (a - a) \circ a = a \circ a - a \circ a$. Since $0 \in a \circ a - a \circ a$, then $0 \in 0 \circ a$ and similarly $0 \in a \circ 0$.

- (2) $a \circ 0 = a \circ (0 0) = a \circ 0 a \circ 0$. Then for all $x, y \in a \circ 0, x y \in a \circ 0$.
- (3) Let $c \in a \circ b$. For all $x \in a \circ b$, we have $x c \in a \circ b a \circ b = a \circ (b b) = a \circ 0$.

This means that $x + a \circ 0 = c + a \circ 0$. Thus $a \circ b = a \circ (b + 0) = a \circ b + a \circ 0 = \bigcup_{x \in a \circ b} x + a \circ 0 = c + a \circ 0$. Similarly, $a \circ b$ is a coset of $a \circ b$. Since $a \circ 0$ and $a \circ b$ are cosets of $a \circ b$, therefore $a \circ b$ is a coset of $a \circ b$.

- $(4)\ 0\ o\ 0\ o\ 0 = 0\ o\ (0\ o\ 0) = \cup_{a \in 0\ o\ 0}\ 0\ o\ a = \cup_{a \in 0\ o\ 0}\ 0\ o\ 0 = \ 0\ o\ 0.$
- (5) Suppose $s \in 0$ o 0 and $r \in R$, then $s \circ r \subseteq 0$ o 0 o r = 0 o $0 \circ r = 0$ o 0. Since $s \circ r$ is a coset of 0 o 0 then $s \circ r = 0$ o 0.
- (6) Suppose $0 \in a \ o \ b$, then for $c \in a \ o \ b$, we have $0 \in c + 0 \ o \ 0$. Thus there exists $m \in 0 \ o \ 0$ such that 0 = c + m. It follow that $c \in 0 \ o \ 0$. Thus $a \ o \ b \subseteq 0 \ o \ 0$, and Since $a \ o \ b$ is a coset of $0 \ o \ 0$, therefore $a \ o \ b = 0 \ o \ 0$. \square

Corollary 1.14. We denote $0 \circ 0$ by Ω , then by Theorem 1.12 clearly if R is a SDMH, Ω is a hyperideal of R. Moreover, R/Ω is a ring.

2. THE ZERO-DIVISOR GRAPH OF A SDMH WHEN $Z(R)^* \cap \Omega = \emptyset$

In this section, we investigate zero-divisor graph of a strongly distributive multiplicative hyperring and compare their properties with zero-divisor graph of a classical commutative ring.

Let (R, +, o) be a commutative multiplicative hyperring. An element $0 \neq b$ of R is said to be a zero-divisor of $a \in R$, if $0 \in a \circ b$. The set of zero-divisors of R denote by Z(R). The zero-divisor graph of R is a graph with elements of $Z(R)^* = Z(R) \setminus \{0\}$ as vertices and two distinct vertices a, b are adjacent if and only if $0 \in a \circ b$. This graph denote by $\Gamma(R)$. By definition 1.5, R is a strong hyperdomain if and only if $Z(R) = \{0\}$, and if R is a strong hyperdomain then $\Gamma(R) = \emptyset$. An element $0 \neq a$ of R is regular if $a \notin Z(R)$. The set of regular elements of R denote by Reg(R).

The zero-divisor graph $\Gamma(R)$ is connected if there exists a path between any two distinct vertices. $\Gamma(R)$ is a complete graph if any two distinct vertices of $\Gamma(R)$ are adjacent. $\Gamma(R)$ is a star graph if there exists an unique vertex of $\Gamma(R)$, which is adjacent to every other vertex.

Let d(a,b) be the length of the shortest path from a to b in $\Gamma(R)$. The diameter of $\Gamma(R)$ is denoted by $diam(\Gamma(R))$, is equal to $sup\{d(a,b) \mid a,b \text{ are distinct vertices of } \Gamma(R)\}$. The girth of $\Gamma(R)$ is denoted by gr(R), is defined as the length of the shortest cycle in $\Gamma(R)$. $(d(a,b) = \infty)$ if there is no such path and $gr(\Gamma(R)) = \infty$ if $\Gamma(R)$ contains no cycles).

In the following statements we will generalize some Theorems and results about zero-divisor graph of a commutative ring that were obtained by D. F. Anderson and P. S. Livingstone in [2].

Theorem 2.1. Let (R, +, o) be a *SDMH*. Then $\Gamma(R)$ is finite if and only if either R is finite or a strong hyperdomain. In particular, if $1 \le |\Gamma(R)| < \infty$, then R is finite and not a hyperfield.

Proof. Suppose that $\Gamma(R) (= Z(R)^*)$ is finite and nonempty. Then there are nonzero $a, b \in R$ such that $0 \in a \circ b$. Let $A = \{r \in R \mid 0 \in a \circ r\}$. Then $A \subseteq Z(R)$ is finite and for all $r \in R$, $0 \circ r \subseteq (a \circ b) \circ r = a \circ (b \circ r)$. Since $0 \in 0 \circ r$, therefore $b \circ r \subseteq A$. Let R be infinite. Since A is finite, then there are $a_1, a_2, \ldots, a_n \in A$ such that $B = \{r \in R \mid b \circ r \subseteq \{a_1, a_2, \ldots, a_n\}\}$ is infinite. So for all $r, s \in B$, $0 \in b \circ (r - s)$. If $C = \{r \in R \mid 0 \in b \circ r\}$, then $C \subseteq Z(R)$ is infinite, that is a contradiction. Thus R must be finite. Convers is obviously. \square

In this part for determining the zero-divisor graph, we suppose that (R, +, o) is a SDMH, $\Omega = 0$ o 0 and $Z(R)^* \cap \Omega = \emptyset$. According to Corollary 1.14, R/Ω is a ring. We denoted R/Ω by \overline{R} and the element $a + \Omega$ of R/Ω by \overline{a} . Here, we state a useful theorem that helps us to determine zero-divisor graph and their properties for a *SDMH*.

Theorem 2.2. If R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. There exists an one-to-one correspondence between the set of zero-divisors of R and the set of zero-divisors of ring \overline{R} .

Proof. If $a \in Z(R)$, there exists $0 \neq b \in R$ such that $0 \in a \circ b$. According to Theorem 1.13(6), $a \circ b = \Omega$. Since $Z(R)^* \cap \Omega = \emptyset$, then $\overline{a}, \overline{b} \in \overline{R}$ are nonzero and $\overline{a}\overline{b} = a \circ b + \Omega = \Omega$. Therefore $\overline{a} \in Z(\overline{R})$. Conversely, suppose $\overline{a} \in Z(\overline{R})$. There exists $\overline{0} \neq \overline{b} \in \overline{R}$ such that $\overline{a}\overline{b} = (a + \Omega) \circ (b + \Omega) = \Omega$. It means that $a \circ b + \Omega = \Omega$ and hence $a \circ b = \Omega$. Since $0 \in \Omega$, hence $0 \in a \circ b$. Then we have $a \in Z(R)$. This complete the proof. \square

This results immediately follow from Theorem 2.2:

Corollary 2.3. If R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. There exists an one-to-one correspondence between the set of Reg(R) and the set of $Reg(\bar{R})$.

Corollary 2.4. Let R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. Then $\Gamma(R)$ is isomorphic to $\Gamma(\overline{R})$. In other words, \overline{a} and \overline{b} are adjacent in $\Gamma(\overline{R})$ if and only if a and b are adjacent in $\Gamma(R)$. Hence $\Gamma(\overline{R})$ is connected if and only if $\Gamma(R)$ is so.

Corollary 2.5. As another proof of Theorem 2.1, if R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$, $\Gamma(\overline{R})$ is finite if and only if $\Gamma(R)$ is so. According to Theorem 2.2 [2], $\Gamma(\overline{R})$ is finite if and only if \overline{R} is finite or a domain. Also \overline{R} is finite if and only if R is finite. Moreover, since $Z(R)^* \cap \Omega = \emptyset$, \overline{R} is a domain if and only if R is a strong hyperdomain.

Theorem 2.6. Let R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. Then $\Gamma(R)$ is connected and $diam(\Gamma(R)) \leq 3$. Moreover, if $\Gamma(R)$ contain a cycle, then $gr(\Gamma(R)) \leq 7$.

Proof. According to Theorem 2.3 [2], $\Gamma(\bar{R})$ is connected and $diam(\Gamma(\bar{R})) \leq 3$, furthermore, if $\Gamma(\bar{R})$ contain a cycle, then $gr(\Gamma(\bar{R})) \leq 2diam(\Gamma(\bar{R})) + 1$. Therefore, according to Theorem 2.2, $\Gamma(R)$ is so. \Box

Theorem 2.7. Let R is a finite SDMH and $Z(R)^* \cap \Omega = \emptyset$. If $\Gamma(R)$ contains a cycle then $gr(\Gamma(R)) \le 4$.

Proof. Since R is finite if and only if $\overline{R} = R/\Omega$ is finite and $\Gamma(R) \cong \Gamma(\overline{R})$, if $\Gamma(R)$ contains a cycle then $\Gamma(\overline{R})$ is so. By Theorem 2.4 [2], $gr(\Gamma(R)) \leq 4$. \square

Theorem 2.9. Let R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. There exists a vertex of $\Gamma(R)$ which is adjacent to every other vertex if and only if either $R/\Omega \cong Z_2 \times A$, where A is an integral domain, or Z(R) is an annihilator hyperideal.

Proof. If $\Gamma(R)$ contains a vertex which is adjacent with other vertices, then $\Gamma(\bar{R})$ is so. By Theorem 2.5 [4], we have $\bar{R} = R/\Omega \cong Z_2 \times A$, where A is an integral domain, or $Z(R/\Omega)$ is an annihilator ideal. If $Z(R/\Omega)$ is an annihilator ideal then for all $\bar{a} \in Z(R/\Omega)$ and for all $\bar{r} \in R/\Omega$, $\bar{a}\bar{r} = a \ o \ r + \Omega = \Omega$, Since $Z(R)^* \cap \Omega = \emptyset$, then $a \ o \ r = \Omega$. Since $0 \in \Omega$, then $0 \in a \ o \ r$. Therefore Z(R) is an annihilator hyperideal. \square

Theorem 2.10. Let R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. Then $\Gamma(R)$ is a complete graph if and only if $\overline{R} \cong Z_2 \times Z_2$ or $x \circ y = \Omega$ for all $x, y \in Z(R)^*$.

Proof. Let $\Gamma(R)$ is a complete graph then $\Gamma(\bar{R})$ is so. According to theorem 2.6 [2], $\Gamma(\bar{R})$ is complete graph if and only if $\bar{R} \cong Z_2 \times Z_2$ or $\bar{x}\bar{y} = \Omega$, for all $\bar{x}, \bar{y} \in Z(\bar{R})^*$. If $\bar{x}\bar{y} = \Omega$, according to theorem 2.2, for all $x, y \in Z(R)^*$, $0 \in x$ o y. Then x o $y = \Omega$. Converse is obviously. \square

Corollary 2.11. Let *R* is a *SDMH* and $Z(R)^* \cap \Omega = \emptyset$. For $x, y \in Z(R)$, define $x \sim y$ if $0 \in x$ o y or x = y. Then relation \sim is an equivalence relation if and only if $\Gamma(R)$ is a complete graph.

3. THE ZERO-DIVISOR GRAPH OF A SDMH WHEN $Z(R)^* \cap \Omega \neq \emptyset$

In this section, we suppose that R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$. According to Theorem 1.13, for every $\alpha \in Z(R)^* \cap \Omega$, all of elements of R are adjacent to α . In this case, $\Gamma(R)$ is connected. But $\Gamma(R)$ and $\Gamma(\overline{R})$ are not isomorphic necessarily.

In the following example we prove that if R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$, $\Gamma(R)$ is not isomorphic to $\Gamma(\overline{R})$.

Example 3.1. Let (R, +, .) is a ring and $\emptyset \neq P$ be a prime ideal of ring. We define $a \circ_P b = ab + P$, for $a, b \in R$. Obviously $(R, +, \circ_P)$ is a SDMH and $\Omega = 0 \circ_P 0 = P$. According to Corollary 1.14, $\overline{R} = R/P = \{r + P \mid r \in R\}$ is a ring. Let $a, b \in \Gamma(R)$, are adjacent. Then $0 \in a \circ_P b$. Hence $a \circ_P b = ab + P = P$ and $ab \in P$. Since P is a prime ideal of R, $a \in P$ or $b \in P$. Therefore $\overline{a} \notin Z(\overline{R})^*$ or $\overline{b} \notin Z(\overline{R})^*$.

Theorem 3.2. Let R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$. Then $\Gamma(R)$ is connected and $diam(\Gamma(R)) \leq 2$. Moreover, if $\Gamma(R)$ contains a cycle, then $gr(\Gamma(R)) \leq 5$.

Proof. If $Z(R)^* \cap \Omega \neq \emptyset$, then by theorem 1.13, for all $a \in Z(R)^* \cap \Omega$, and for all $b \in R$, $a \circ b = \Omega$. Since $0 \in a \circ b$, Then a is adjacent to all of elements of R, and $\Gamma(R)(=R^*)$ is connected and d(a,b)=1. Now, we suppose that $a,b \in Z(R)^* \setminus \Omega$. If $0 \in a \circ b$, obviously $\Gamma(R)$ is connected and d(a,b)=1. Otherwise, there exist $x \in Z(R)^* \cap \Omega$ such that $0 \in a \circ x$ and $0 \in x \circ b$. Then a-x-b is a path of length 2 and consequently $\Gamma(R)$ is connected and $\operatorname{diam}(\Gamma(R)) \leq 2$. \square

Theorem 3.3. Let R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$. If $\Gamma(R)$ contains a cycle, then $gr(\Gamma(R)) \leq 3$.

Proof. If $\Gamma(R)$ contains a cycle, then there exist $a,b \in Z(R)^* \setminus \Omega$ such that $0 \in a \circ b$. On the other hand, for all $x \in Z(R)^* \cap \Omega$, we have $0 \in a \circ x$ and $0 \in x \circ b$. Then a - x - b - a is a triangle. \Box

By Theorem 3.3, if $Z(R)^* \cap \Omega \neq \emptyset$, we have seen that $\Gamma(R)$ can be a triangle. But $\Gamma(R)$ cannot be an *n*-gon for any $n \geq 4$.

Theorem 3.4. Let R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$. Then there is always at least one vertex of $\Gamma(R)$ which is adjacent to every other vertex.

Proof. According to Theorem 1.13(5). □

Theorem 3.5. Let R is a SDMH and $Z(R)^* \cap \Omega \neq \emptyset$. Then $\Gamma(R)$ is complete if and only if for all $x, y \in Z(R)^* \setminus \Omega$, $x \circ y = \Omega$.

Proof. The proof is obviously. \Box

Corollary 3.6. Let R is a SDMH and $Z(R)^* \cap \Omega = \emptyset$. For $x, y \in Z(R)$, define $x \sim y$ if $0 \in x \circ y$ or x = y. Then relation \sim is an equivalence relation if and only if $\Gamma(R)$ is a complete graph.

REFERENCES

- [1] D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, "The zero-divisor graph of a commutative ring II": *Lecture Notes in Pure and Appl. Math.*, vol. 220, Marcel Dekker, New York, pp. 61-72, 2001.
- [2] D.F. Anderson, P.S. Livingston, "The zero-divisor graph of a commutative ring", *J. Algebra*, 217, 434-447, 1999.
- [3] I. Beck, "Coloring of commutative rings", J. Algebra 116, 208-226, 1988.
- [4] P. Corsini, V. Leoreanu, "Applications of hyperstructure theory", *Kluwer academic publications* 2003.
- [5] B. Davvaz, V. Leoreanu, "Hyperrings theory and application", *International Academic Press*, 2007.
- [6] T. Vougiouklis, "Hyperstructures and their representations", *Hardonic*, press, Inc. 1994.