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ABSTRACT

The purpose of this paper is the study of zero-divisor graphs of a commutative multiplicative hyperrings, as a
generalization of commutative rings. In this regards we consider a commutative multiplicative hyperring
(R,+,0), where (R, +) is an abelian group, (R, +) is a semihypergroup and for all a,b,c € R,:a0 (b +c) S
aob+aocand(a+b)ocSaob+aoc.Fora€ R anonzero element a € R is said to be a zero-divisor
of a, if 0 € aob and the set of zero-divisors of R is denoted by Z(R). We associative to R a zero-divisor
graph I'(R), whose vertices of I'(R) are the elements of Z(R)*(= Z(R)\{0}) and two distinct vertices of I'(R)
are adjacent if they were in Z(R). Finally, we obtain some properties of I'(R) and compare some of its
properties to the zero-divisor graph of a classical commutative ring and show that almost all properties of
zero-divisor graphs of a commutative ring can be extend to I'(R) while R is a strongly distributive
multiplicative hyperring.

Keywords: Multiplicative hyperring, zero-divisor graph, strongly distributive.

1. INTRODUCTION

The concept of the zero-divisor graph of a ring was raised by I. Beck when discussing the
coloring of a commutative ring in [3] for the first time. Later D. F. Anderson and P. S. Livingston
introduced the zero-divisor graph of a unitary commutative ring R, denoted by I'(R) in [2]. They
considered the set of nonzero zero-divisor of as a vertice of I'(R) and assumed that two distinct
vertices x and y are adjacent if and only if xy = 0. Subsequently, they proved that if R is a finite
ring, then I'(R) is finite and connected and any two vertices can be joined by less than four edges.
In particular, they were determined when I"(R) is a complete graph and a star graph.

In this paper we create a connection between the concept of the zero-divisor graph of
commutative rings and commutative multiplicative hyperrings and generalize some results and
properties of zero-divisor graph of a commutative ring to the strongly distributive multiplicative
hyperrings.

In this section we will list some definitions, notions and results about commutative hyperrings
from some references.

“ Corresponding Author: e-mail: rameri@ut.ac.ir, tel: +989122805056

101



Z. Soltani, R. Ameri, Y. Talebi Rostami / Sigma J Eng & Nat Sci 9 (1), 101-106, 2018

Definition 1.1. Let H be a nonempt y set and P*(H) denotes the set of all of nonempty subsets of
H. A hyperoperation oon H isa m apping o: HXH — P*(H). A nonempty set H together
with a family of hyperoperartion is a hyperstructure. A hyperstructure (H, o) is a semihypergroup
if foralla,b,c € H,(aob) oc=ao (boc). (Associativity axiom). A hyperstructure (H,0) is a
quasihypergroup if for all a € H, we have a 0o H = H = H o a. In the other words for all a, b, c €
H there exist x,y € H suchthata € x o b n b o y (Reproduction axiom).

Definition 1.2. A hyperstructure (H, o) which is the both semihypergroup and quasihypergroup is
called a hypergroup.

Definition 1.3. A general hyperring is an algebraic hyperstructure (R,+,0) that satisfies the
following axioms:

(1) (R, +) is a hypergroup.
(2) (R, 0) is a semihypergroup.
(3)Foralla,b,ceR,ao(b+c)=aob+aocand(a+b)oc=aoc+boc.

A hyperring (R,+,0) is commutative, if the both hyperoperations + and o are
commutative.The hyperring R is unitary if there exists an element u € R such that for all
a€Raou=uoa={a}

Definition 1.4. The unitary commutative hyperring R is a hyperfield if for every non-zero
element a € R, there exists b € R such that u € a o b. where u is an unit element of R.

Definition 1.5. A commutative hyperring R is a strong hyperdomain if for all a,b € R, if
0€aob witha#0(orb #0),thenb =0(ora=0).Ifaob = {0} impliesa=0orb=0,
we will talk about hyperdomain. Obviously, every strong hyperdomain is a hyperdomain and
every hyperfield is a strong hyperdomain.

Definition 1.6. A nonempty subset A of a hyperring (R, +, 0) is subhyperring of R if (4, +,0) is
itself a hyperring, under the restriction of hyperoperation + and o to A.

Definition 1.7. Let A is a subhyperring of a hyperring R. We say that A4 is a left (right) hyperideal
of RifforallreERanda € A, roa € A(aor € A). A is called a hyperideal if A4 is both a left
and a right hyperideal. A hyperideal P of a commutative hyperring R is said to be prime if P # R
and forall a,b € R, ao b < P implies a € P or b € P. A hyperideal P of R is said to be strong
primeifaobnP # 0 impliesa e Porb € P.

Definition 1.8. A triple (R, +, 0) is multiplicative if + be a classical commutative operation and o
be a hyperoperation and following statements hold:

(1) (R, +) is an abelian group.

(2) (R, 0) is a semihypergroup.

(3)Foralla,b,ceR,ao(b+c)Saob+aocand(a+b)ocSaoc+boc.

(4) Foralla,b € R,ao(—=b) =(—a)o b =—(aob).

If in (3) equality hold, then R is a strongly distributive multiplicative hyperring (briefly, we
say that R isa SDMH).

Definition 1.9. A nonempty subset S of a commutative multiplicative hyperring (R,+,0) is a
subhyperring of R if (S, +, 0) is a multiplicative hyperring. In other words, S is a subhyperring of
R if (S,4) isasubgroup of (R,+) (i.e,S—ScS)andforallr,s €S, roscS.

Definition 1.10. A nonempty subset I of a multiplicative hyperring (R, +,0) is a hyperideal if
following axioms hold:

(1) (I, +) is asubgroup of (R, +).
(2)(IoR)U(RoD S I.

By this definition clearly, every hyperideal is a subhyperring.
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Let (R, +, 0) be a multiplicative hyperring and I is a hyperideal of R. Let R/I be the set of all
cosets of R with restrict to I, R/I = {a + I | a € R} . We define a hyperoperation * on R/I by

(a+DxMb+D={c+I|c€aob}
Then (R/I, +,*) is a multiplicative hyperring, moreover if R isa SDMH, so is R/I.

Theorem 1.11. A strongly distributive hyperring (R,+,0) is a ring if and only if there exists
a,b € R,suchthat|aob|= 1.

Proof. Corollary 4.1.6 [5]. 0

Theorem 1.12. If I is a hyperideal of a commutative multiplicative hyperring (R, +, 0), then for
every element a +1 € R/I, we have | (a+1) * (0 +1) | = 1. In other words, if R is a SDMH,
then R/I is aring.

Proof. According to Theorem 4.3.5 [5] and Theorem 1.11. o
Theorem 1.13. Let (R, +,0) isa SDMH, then for all a, b € R, we have:

(1)0€ao0and0€0oa.

(2 Forallx,y€ao00,x— y€ao0.(ie.,ao0isasubgroup of R.)
(3)aobisacosetsof 00 0.

(4)00000=000.

(5)Forallse0o0andr €eR,sor=000.
6)Ifo€eaobthenaob=000.

Proof. (1) 0oa=(a— a)oa=aoa—aoa.Since0€Eaoa—aoa,then0€0oa
and similarly 0 € a 0 0.

(2 ao0=a0(0—-0)=ao00— ao0.Thenforallx,y€ao00,x— y€ao0.
(3) Let ceaob. For all x€eaob, we have x— c€aob—aob = ao(b— b) =
ao0.

This means that x+ao00=c + ao00. Thus aob=ao(b+ 0)=aob+ao00=
Uyeaop X+ao0=c+ao0.Similarly, ao b is a coset of aob. Since ao0 and 00 b are
cosets of 0 0 0, therefore a o b is a coset of 0 0 0.

400000=00(000)=Ugepoo 00a=Ugepoo 000= 000.

(5) Suppose se0o0andr € R, thensor €0000r=00(007r)=000.Sincesoris
acosetof 0o0Othensor=000.

(6) Suppose 0 € a o b, then for ¢ € a 0 b,we have 0 € ¢ + 0 0 0. Thus there exists m € 00 0
such that 0 = ¢ + m. It follow that c € 00 0. Thus ao b € 00 0, and Since a o b is a coset of
000, thereforeaob=000.0

Corollary 1.14. We denote 0 0 0 by . then by Theorem 1.12 clearly if R is a SDMH, Q2 is a
hyperideal of R. Moreover, R/ is a ring.

2. THE ZERO-DIVISOR GRAPH OF ASDMHWHEN Z(R)* N2 =0

In this section, we investigate zero-divisor graph of a strongly distributive multiplicative
hyperring and compare their properties with zero-divisor graph of a classical commutative ring.

Let (R, +, 0) be a commutative multiplicative hyperring. An element 0 # b of R is said to be
a zero-divisor of a € R, if 0 € a 0 b. The set of zero-divisors of R denote by Z(R). The zero-
divisor graph of R is a graph with elements of Z(R)* = Z(R)\{0} as vertices and two distinct
vertices a, b are adjacent if and only if 0 € a o b. This graph denote by I"(R). By definition 1.5, R
is a strong hyperdomain if and only if Z(R) = {0}, and if R is a strong hyperdomain then
I'(R) = @. Anelement 0 # a of R is regular if a € Z(R). The set of regular elements of R denote

by Reg(R).
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The zero-divisor graph I'(R) is connected if there exists a path between any two distinct
vertices. I'(R) is a complete graph if any two distinct vertices of I'(R) are adjacent. I'(R) is a star
graph if there exists an unique vertex of I'(R), which is adjacent to every other vertex.

Let d(a, b) be the length of the shortest path from a to b in I'(R). The diameter of I'(R) is
denoted by diam(I'(R)), is equal to sup{d(a,b) | a,b are distinct vertices of I'(R)}. The
girth of I'(R) is denoted by gr((R)), is defined as the length of the shortest cycle in I'(R).
(d(a, b) = oo if there is no such path and gr(I'(R)) = oo if I'(R) contains no cycles).

In the following statements we will generalize some Theorems and results about zero-divisor
graph of a commutative ring that were obtained by D. F. Anderson and P. S. Livingstone in [2].

Theorem 2.1. Let (R, +,0) be a SDMH. Then I'(R) is finite if and only if either R is finite or a
strong hyperdomain. In particular, if 1 < | '(R) | < oo, then R is finite and not a hyperfield.

Proof. Suppose that I'(R) (= Z(R)*) is finite and nonempty. Then there are nonzero a, b € R such
that 0 €eaob. Let A={reR|0€aor} Then A S Z(R) is finite and for all r € R, Oor S
(aob)or=ao(bor). Since 0 € 0or, therefore bor € A. Let R be infinite. Since A is
finite, then there are a4, ay, ... ,a, € Asuchthat B={r e R|bor < {ay,a,, ... ,a,}} is infinite.
Soforallr,seB,0€bo(r—s). IfC={reR|0€bor} then C € Z(R) is infinite, that is a
contradiction. Thus R must be finite. Convers is obviously. o

In this part for determining the zero-divisor graph, we suppose that (R,+,0) is a SDMH,
Q=000and Z(R)* n Q= @. According to Corollary 1.14, R/Q is a ring. We denoted R/Q by
R and the element a + Q of R/Q by a. Here, we state a useful theorem that helps us to determine
zero-divisor graph and their properties fora SDMH.

Theorem 2.2. If R is a SDMH and Z(R)* N Q = @. There exists an one-to-one correspondence
between the set of zero-divisors of R and the set of zero-divisors of ring R.

Proof. If a € Z(R), there exists 0 # b € R such that 0 € a o b. According to Theorem 1.13(6),
aob=20Q.Since Z(R)*NQ = @,then @b € R are nonzero and @b = a0 b + Q = Q. Therefore
@ € Z(R). Conversely, suppose @ € Z(R). There exists 0 # b € R such that ab = (a+
WDob+Q)=0. It means that aob+Q=Q and hence aob = Q. Since 0 € Q, hence
0 € a o b. Then we have a € Z(R). This complete the proof. o

This results immediately follow from Theorem 2.2:

Corollary 2.3. If R is a SDMH and Z(R)* n Q = @. There exists an one-to-one correspondence
between the set of Reg(R) and the set of Reg( R).

Corollary 2.4. Let R isa SDMH and Z(R)" N Q = @. Then I'(R) is isomorphic to I'(R). In other
words, @ and b are adjacent in I'( R) if and only if a and b are adjacent in I'(R). Hence I'( R) is
connected if and only if I'(R) is so.

Corollary 2.5. As another proof of Theorem 2.1, if R is a SDMH and Z(R)* nQ = @, I'(R) is
finite if and only if I'(R) is so. According to Theorem 2.2 [2], I'( R) is finite if and only if R is
finite or a domain. Also R is finite if and only if R is finite. Moreover, since Z(R)* N Q. = @, R is
a domain if and only if R is a strong hyperdomain.

Theorem 2.6. Let R is a SDMH and Z(R)*nQ=@. Then I'(R) is connected and
diam(I'(R)) < 3. Moreover, if I'(R) contain a cycle, then gr(I'(R)) < 7.

Proof. According to Theorem 2.3 [2], I'( R) is connected and diam(I"( R)) < 3, furthermore, if
I'(R) contain a cycle, then gr(I'(R)) < 2diam(I'( R)) + 1. Therefore, according to Theorem
2.2,T'(R)isso.O

Theorem 2.7. Let R is a finite SDMH and Z(R)*NnQ = @. If I'(R) contains a cycle then
gr(I'(R)) < 4.
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Proof. Since R is finite if and only if R = R/Q is finite and I'(R) = I'(R), if I'(R) contains a
cycle then I'(R) is so. By Theorem 2.4 [2], gr(I'(R)) < 4.0

Definition 2.8. A hyperideal I is an annihilator hyperideal if and only if for all a € I and for all
reER,0€roaor0€aor.

Theorem 2.9. Let R is a SDMH and Z(R)* N Q = @. There exists a vertex of I'(R) which is
adjacent to every other vertex if and only if either R/Q = Z, X A, where A is an integral domain,
or Z(R) is an annihilator hyperideal.

Proof. If I'(R) contains a vertex which is adjacent with other vertices, then I'(R) is so. By
Theorem 2.5 [4], we have R = R/Q = Z, X A, where A is an integral domain, or Z(R/€Q) is an
annihilator ideal. If Z(R/Q) is an annihilator ideal then for all @ € Z(R/Q) and for all ¥ € R/Q,
ar=aor+Q=Q, Since ZR)*NQ =09, then aor=0Q. Since 0€Q, then 0€aor.
Therefore Z(R) is an annihilator hyperideal. O

Theorem 2.10. Let R isa SDMH and Z(R)* N Q = @. Then I'(R) is a complete graph if and only
ifR=2Z, xZ,orxoy=Qforall x,y € Z(R)".

Proof. Let I'(R) is a complete graph then I'(R) is so. According to theorem 2.6 [2], I'(R) is
complete graph if and only if R = Z, x Z, or xy = Q, for all X,y € Z(R)*. If Xy = Q, according
to theorem 2.2, for all x,y € Z(R)*, 0 € x 0 y. Then x 0 y = Q. Converse is obviously. o

Corollary 2.11. Let R isa SDMH and Z(R)* N Q = @. For x,y € Z(R), definex~y if0€Exo0y
or x = y. Then relation ~ is an equivalence relation if and only if I'(R) is a complete graph.

3. THE ZERO-DIVISOR GRAPH OF ASDMHWHEN Z(R)* N2 # @

In this section, we suppose that R is a SDMH and Z(R)* n Q # @. According to Theorem
1.13, for every a € Z(R)* n Q, all of elements of R are adjacent to a. In this case, I'(R) is
connected. But I"'(R) and I'(R) are not isomorphic necessarily.

In the following example we prove that if R is a SDMH and Z(R)* N Q # @, I'(R) is not
isomorphic to I'(R).

Example 3.1. Let (R, +,.) isaring and @ # P be a prime ideal of ring. We define a 0p b = ab +
P,fora,b € R.Obviously (R,+, op) isaSDMH and Q = 00p 0 = P. According to Corollary
114, R=R/P={r+P|r €R} is a ring. Let a,b € I'(R), are adjacent. Then 0 € a op b.
Hence aopb=ab+P =P and ab € P. Since P is a prime ideal of R, a€P or b €P.
Therefore @ & Z(R)* orb € Z(R)".

Theorem 3.2. Let R is a SDMH and Z(R)*nQ #@. Then I'(R) is connected and
diam(I'( R)) < 2. Moreover, if I'(R) contains a cycle, then gr(I'(R)) < 5.

Proof. If Z(R)* N Q # @, then by theorem 1.13, for all a € Z(R)*n Q, and for all b €R,
aob=Q. Since 0 €aob, Then a is adjacent to all of elements of R, and I'(R)(= R*) is
connected and d(a,b) = 1. Now, we suppose that a,b € Z(R)*\ Q. If 0 € a o b, obviously
'(R) is connected and d(a, b) = 1. Otherwise, there exist x € Z(R)* n Q such that 0 € a o x and
OExob. Then a—x —b is a path of length 2 and consequently I'(R) is connected and
diam(I'(R)) < 2.0

Theorem 3.3. Let R isa SDMH and Z(R)* n Q # @. If ['(R) contains a cycle, then gr(I'(R)) <
3.

Proof. If I'(R) contains a cycle, then there exist a,b € Z(R)* \ Q such that 0 € a 0 b. On the
other hand, for all x € Z(R)*nQ,we have 0 Eaox and 0 €Exob. Thena—x—b—a is a
triangle. o
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By Theorem 3.3, if Z(R)* N Q # @, we have seen that I'(R) can be a triangle. But I'(R)
cannot be an n-gon for any n = 4.

Theorem 3.4. Let R is a SDMH and Z(R)* N Q # @. Then there is always at least one vertex of
I'( R) which is adjacent to every other vertex.

Proof. According to Theorem 1.13(5). 0

Theorem 3.5. Let R isa SDMH and Z(R)* N Q # @. Then I'(R) is complete if and only if for all
x,y €EZ(R)'\Q,xo0y =Q.

Proof. The proof is obviously. o

Corollary 3.6. Let R is a SDMH and Z(R)*NnQ =@. For x,y € Z(R), define x~y if 0 €
x oy orx =1y.Then relation ~ is an equivalence relation if and only if I'(R) is a complete graph.
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