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ABSTRACT

In this paper, we introduced the notion of derivations on hyperlattices and investigated some related
properties. Also, we characterized the FiXd ( L) by derivations.
Keywords: Lattices, hyperlattices, derivation, FixD.

1. INTRODUCTION

The theory on hyper algebras called also multi-algebras was introduced by French
mathematician Marty [1]. In a classical algebraic structure, the composition of two elements is an
element while in an algebraic hyperstructure that is the suitable generalization of classical
algebraic structure the composition of two elements is a set. Hyper algebras has many
applications to pure and applied mathematics and several papers and books have been written on
this topics such as hypergroups [2], hyperrings [3], hyper BCl-algebras [4], and so on.

In algebra, the notion of derivations of rings plays an important role. The notion of
derivations in rings were studied by Posner [5] and many results were given on derivations of
prime rings. Later, the notion of derivations has been developed by many authors in many
different directions like Jordan derivation, generalized derivation in rings and near-rings. Luca
Ferrari [9] pursued and completed the problems initiated by Szasz. Then, X. L. Xin, T. Y. Li, and
J. H. Lu [10] went on studying the notion of derivation on a lattice and investigated some of its
properties. We introduced the notion of symmetric bi-derivations on lattices and derived some
related properties [7].

In this paper, the derivation in hyperlattices is introduced and an example is given. Also, some
basic properties of derivations are derived.

2. PRELIMINARIES

The composition of two elements is an element in a classical algebraic structure while in an
algebraic hyperstructure the composition of two elements is a set. Let H be a non-empty set and
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¢ (H) be t he set of all nonempty subsets of H . A binary hyperoperation on H isa

map O from H xH to g (H). The couple (H,0) is called a hypergroupoid . If A
and B are nonempty subsets of H , then we denote

AoB= |J aob, xoA={x}oA and Aox=Ao{x}

aeAbeB
A hypergroupoid (H,0) is called a Semihypergoup if for all X,Y,Z of H we have
(xoy)oz=x0(yo0 z),which means that

Uuoz= Uxov

uexoy veyoz

Definition 2.1 Let L be a nonempty set, v:LxL — @ (L) [A:LxL— o (L)]
be a hyperoperation, and A:LxL-—>L [v:LxL-—>L] be an operation. Then
(L,v,/\) is a (join) meet hyperlattice if for all X,VY,Z € L the following condions hold:

(hl1) xexvx and X=XAX (XeXAX and X=XvX);
(h12) xv(yvz)=(xvy)vz and XA(YAZ)=(XAY)AZ
(hI3) xvy=yvx and XAYy=YyAX

(hl4) xexa(Xvy)nxv(XAYy);

L iscalled a strong join hyperlattice,

(h15) If yexvy, then x=xAaYy,

where for all nonempty subsets of X and Y of L,

XvYy=U xvy and XAY={xay|xeX,yeY}

xeX,yeY
Similarly, a strong meet hyperlattice can be defined. (L,\/,/\) is called a hyperlattice if L
is both join and meet hyperlattices. A hyperlattice (L,v,/\) is called a superlattice if for all
X,y € L, we have
xexvy if and only if yexay.
Let L be ajoin hyperlattice. For each X, ye L, we define two relations on L as follows:
(x,y) € < if and only if x=xAaYy,
(x,y) € < if and only if yexwvy.

Obviously, join and meet (strong) hyperlattice are dual of each other so definitions and
properties which have been stated and proved for one of them are correct for one by suitable
change.

(X,y) €< isdenoted by X <Y and (X,Y) €< is denoted by X < Y. Moreover, for
all nonempty subsets X and Y of L, itis defined as X <Y if there exists X € X and
yeY suchthat X<y and X <Y if for each X€ X there exists Y €Y such that
X<y.
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A ZEero of a hyperlatti ce (of each kind) L isanelement 0 with 0 < X forall Xe L.A

unit , 1, satisfies X <1 forall Xe L. < isan ordering relation on join strong hyperlattice,
so it can be concluded that there are at most one zero and at most one unit. A bounded

hyperlattice is one that has both O and 1. In a bounded join hyperlattice L, Y is a
complement of X if XAY =0 and 1€ XV Y. The set of complement elements of X is
denoted by X°. If card(x®) =1, then the complement element of X is denoted by X° too.

A complement hyperlattice is a bounded hyperlattice in which every element has at least one
complement. Also, L is called a good hyperlattice if O\ 0 ={0} foreach X € L anditis

called a s-good hyperlattice if XV O ={X} for each Xe& L. Clearly, every s-good
hyperlattice is a good hyperlattice.

Proposition 2.2 [6] Let (L,\/,/\) be a join strong hyperlattice. Then for all X,Y,Z € L
and for all nonempty subsets X,Y and Z of L the following hold:

(i) <=< and (L,<) is a poset. Also, if <=< then we can replace hl4 by
"XexaA(Xvy)

(i) XAYSX, Y<XVY;

iy X = (X v X)N(X AY);

i) Xv{YvZ)=(XVvY)vZ and X A(Y AZ)=(XAY)AZ;

W If XeXAY then Y n(xvY) =,

(Vi) If X< Y, then XAZSYAZ;

(vii) If X,y EXV Y, then X=Y,s0 XY=L impliesthat X =Y ;

(viii) X vy ={0} impliesthat X =y =0;

(ix) AA0={0};

x) 0€0v A impliesthat 0 € A.

Definition 2.3 [6] A hyperlattice (L,v,A) is said to be distributive if for all X,Y,Z € L
we have XA (YV Z) = (XA Y) Vv (XAZ).A distributive hyperlattice (L,v,A) is said to
be s-distributive if and only if X\ (YA Z) = (XV Y)A(XV Z).

Proposition 2.4 [6] Let (L,v,/\) be a distributive join strong hyperlattice. Then for each
X,Y,Z e L wehave:

(i) L isagood hyperlattice and Y € X v O impliesthat yv0 < Xxv0;

(i) If L isadistributiveand X € YV Y, then X< Y ;

(i) If Yy <X and Z< X, then Y\ Z < X. Inparticular, Ov X < X and XV X < X.
Further more, if L is complemented, then

(iv)If Le X Z where Z € Y©,then Y < X.
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As usual, a subhyperlattice of a hyperlattice L is a nonempty subset of L which is a strong
join hyperlattice, that is, which is closed underhyperoperation v and operation A as defined in

L.
Example 2.1 [6] Let L :={0, X, X,,1} be a set with the Cayley table;

A0 x x, 1

0/0 0 0 O
XX 10 x 0 X
X, [0 0 X, X,
10 x x, 1

v | 0 X X, 1
0140y {x} ok {1}
[} 0%} {1} {x,1}
X 0o} {1} {0x} {x1}
i ¢ {1} L

Then (L,Vv,A,0,1) is an s-good complemented distributive join strong hyperlattice.

3. DERIVATIONS ON HYPERLATTICES

Definition 3.1 Let L be a join hyperlattice. A map d is called a derivation of L if d satisfies
d(xAy)e(d(xX)Ay)v(xXAad(y))
forall X,y eL.

Example 3.1 Let L be the join hyperlattice given in Example 2.1 and define a function d on

L by
0, ifx=0,x,1
d(x) = :
X,, X=X,
Then we can see that O is a derivation on L .
Proposition 3.2 Let L bea join hyperlattice with a unit 1 and d be the derivation on L.
Then d(X) € d(X)v XxAd(l) forall Xe L.

Proof. Let X be an element in a join hyperlattice with a unit 1 and d be the derivation on L.
Then
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d(x) =d(xAl)
e d(x)Alvxad(l)
=d(X)v xAd(L)
Sod(x) ed(x) v xAd(l).Andalsofor X =1
d(1) =d(1al)
e d(1)Alviad(l)
=d(1)vd(1)
Therefore d(1) e d(1)vd(l).
Proposition 3.3 Let L be a join hyperlattice with a zero and d be the derivation on L . Then
we d(0) € OvO.
Proof. Let O be the zero element in a join hyperlattice and d be the derivation on L. Then
d(0) =d(A0)
e dO)A0vO0Ad(0)
=0vO0
sod(@) e 0vO.

Proposition 3.4 Let L be a join hyperlattice with a unit 1 and 0 be the derivation on L.
Then the followings hold for all X € L :

i) 1If x>d(1) then d(1) < d(x)
i) If Xx<d (1) then x < d(X).
Proof. Let X be an element in a join hyperlattice with a unit 1 and d be the derivationon L .
i) Let X >d (1) foranelement X € L.
Xx>d(1) ifandonly if X Ad(1) =d(1). Therefore
d(x) e d(X)v(xad(1))
=d(x)vd()
Sod(x) e d(x)vd(l).Therefore d(1) < d(X).
i) Let X <d (1) foranelement X L.
x<d(1) ifandonly if X Ad(1) = X. Therefore
d(x) e d(X)v(xad(1))
=d(x)vx
Sod(x) € d(x)v X.Therefore X < d(X).

Proposition 3.5 Let L be a join hyperlattice and d be the derivation on L . Then for any
X,yelL
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dx) € @)AXVY))v(xad(xvy))
Proof. Let L be a join hyperlattice and d be the derivation on L . Then we have By (hl4)
wehave X € XA(XVY)NXV(XAY)therefore X € XA (XVY).Then
d(x) e d(xa(xvy))
=([@dX)A(xvy))v(xad(xvy))
Therefore d(X) € (A(X)AXVY)Vv(XAd(XVvYy)).
Proposition 3.6 Let L be a join strong hyperlattice and d be the derivation on L . Then for
any Xe L
d(x) e (d(X)AX)v(xXAd(X)

Proof. Let L be a join strong hyperlattice and d be the derivationon L and X € L. Then

d(x) =d(xAXx) e ([d(X)AX)v(xAad(x))
= (d(X) A(d(X) A X) Vv (d(X) AX)

Therefore
d(x) e (d(X)AX) v (xAd(X))

If L is distributive and d(X) <d(X) AX and also d(x)=d(X) A X. Therefore
d(x)<x.
Proposition 3.7 Let L be a join strong hyperlattice and d be the derivationon L . If y<X
and d(X) = X forany X,y € L then

d(y) € yv(xad(y))

Proof. Let L be a join hyperlattice and d be the derivation on L and X, y € L and also
assume that Y < X and d(X) = X. Then

d(y) =d(xay) € (d(X)Ay)v(xad(y))
= (xAy)v(xad(y)
=yvi(xad(y))
Therefore

d(y) e yv(xad(y))
Additionally, if L is distributive

d(y) e yv(xa(d(y)ay)
=yv((xay)ad(y))
=yv(yad(y))
=yvd(y)

Therefore

82



Derivations on Hyperlattices / Sigma J Eng & Nat Sci 9 (1), 77-84, 2018

d(y) € yvd(y)
Definition 3.8 Let d be a derivation of a join hyperlattice L . We can define a set FiX, (L) by
Fix, (L) ={xeL|d(x) e{x}}
Proposition 3.9 Let L be a join strong distributive hyperlattice and d be the derivationon L.
Define d*(X) = d(d(X)) forall Xe L.Then d*(x) e Fix,(L) forall xeL.
Proof. Let L be a join strong distributive hyperlattice and d be the derivation on L. Then

d*(x) =d(d(x)

=d(x Ad(X))
= e (d(X)Ad(X)v(XAd?(X)
=d(x) v (X Ad2(X))

o d(d(x))<d(x)<x

We get

d(x) v (xAd?(x)) = d(x)
sod(d(x))=d*(x) e d(x),ied?(X) e Fix,(L)
Definition 3.10 If X <Y implies d(X) <d(y) forall X,y € L where d is a derivation

of the a join hyperlattice L then d is called isotone derivation.
Proposition 3.11 Let L be a join strong distributive hyperlattice with a unit 1 and d be the
derivationon L. 1f d is an isotone derivation then the following hold for all X € L :

yd(X) e xad(l)

i) d(X)vd(y)=d(xvy)
Proof. Let L be a join strong distributive hyperlattice with a unit 1 and d be the derivation on
L andalsolet d be an isotone derivation. Then

i) Since d is isotone we have d(X)<d(1l) and also d(X)<X. Then we

d(x) < x Ad (1) .We have already known that
d(x) e d(x)vxad(l)
=xAd(1)

Then d(X) € xad(l).

ii) Since d s isotone then d(X)=d(xvy) and d(y)=d(Xvy) then
d(x)vd(y)=d(xvy) forall X,yelL.
Proposition 3.12 Let L be a join hyperlattice and d be the derivation on L. If d is the
identity derivationthen d(X v y) € (Xvd(y)A(d(X)vy)foral X,yelL.

Proof. Let d bean identity derivation on a join hyperlattice L then
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d(xvy) € XVvYy

=(xvy)a(xvy)
= (xvd(y) A @) vY)
Therefore, d(Xvy) € (Xvd(y)ADX)vy)
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