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Abstract: In this paper, we study skew cyclic codes over the ring R = Fq+uFq+vFq+uvFq, where u2 = u, v2 =
v, uv = vu, q = pm and p is an odd prime. We investigate the structural properties of skew cyclic
codes over R through a decomposition theorem. Furthermore, we give a formula for the number of
skew cyclic codes of length n over R.
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1. Introduction

Cyclic codes form an important subclass of linear block codes, studied from the fifties onward. Their
clear algebraic structures as ideals of a quotient ring of a polynomial ring makes for an easy encoding. A
landmark paper [11] has shown that some important binary nonlinear codes with excellent error-correcting
capabilities can be identified as images of linear codes over Z4 under the Gray map.

Recently, in [3], D. Boucher et al. gave skew cyclic codes defined by using the skew polynomial ring
with an automorphism θ over the finite field with q elements. The definition generalizes the concept of
cyclic codes over non-commutative polynomial rings. Soon afterwards, D. Boucher et al. studied skew
constacyclic codes in [5]. Later, in [4], some important results on the duals of the skew cyclic codes over
Fq[x; θ] are given. In [12], I. Siap et al. presented the structure of skew cyclic codes of arbitrary length.
Further, S. Jitman et al. in [10] defined skew constacyclic codes over the skew polynomial ring with
coefficients from finite rings. In [1], T. Abualrub and P. Seneviratne studied skew cyclic codes over ring
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F2 + vF2 with v2 = v. Moreover, J. Gao [6] and F. Gursoy et al. [8] presented skew cyclic codes over
Fp + vFp and Fq + vFq with different automorphisms, respectively. In [7], J. Gao et al. also studied skew
generalized quasi-cyclic codes over finite fields.

In this article, we mainly study skew cyclic codes over ring R = Fq + uFq + vFq + uvFq, where
u2 = u, v2 = v, uv = vu and q = pm.

In our work, the automorphism θ on the ring R is defined to be

θ(b0 + b1u+ b2v + b3uv) = bp0 + bp2u+ bp1v + bp3uv,

for all b0+b1u+b2v+b3uv ∈ R, where bi ∈ Fq, and i = 0, 1, 2, 3. In fact, for any a1η1+a2η2+a3η3+a4η4 ∈
R, we have

θ(a1η1 + a2η2 + a3η3 + a4η4) = θ(a1)η1 + θ(a2)η2 + θ(a4)η3 + θ(a3)η4.

Note that if m is even, the order of the ring automorphism |〈θ〉| is m, otherwise, 2m.

The material is organized as follows. In Section 2, we show the basics of codes over ring R that
we need for further reference. Section 3 derives the structure of linear codes over R. In Section 4, we
introduce skew cyclic codes over ring R and give the structural properties of skew cyclic codes over R
through a decomposition theorem. Section 5, we give a example to illustrate the discussed results.

2. Preliminary

Let Fq be a finite field with q elements, where q = pm, p is an odd prime. Throughout, we let R denote
the commutative ring Fq +uFq +vFq +uvFq, where u2 = u, v2 = v, and uv = vu. Let η1 = 1−u−v+uv,

η2 = uv, η3 = u − uv, η4 = v − uv. It is easy to verify that η2i = ηi, ηiηj = 0, and
∑4

k=1 ηk = 1, where
i, j = 1, 2, 3, 4, and i 6= j. According to [2], we have R = η1R ⊕ η2R ⊕ η3R ⊕ η4R. By calculating, we
can easily obtain that ηiR ∼= Fq, i = 1, 2, 3, 4. Therefore, for any r ∈ R, r can be expressed uniquely as
r =

∑4
i=1 ηiai, where ai ∈ Fq for i = 1, 2, 3, 4.

We recall the definition of the Gray map over R in [13]

Φ : R = Fq + uFq + vFq + uvFq → F4
q

η1a+ η2b+ η3c+ η4d → (a, a+ b, a+ c, a+ b+ c+ d).

Equivalently, if r = a′ + b′u+ c′v + d′uv ∈ R, then

Φ(r) = (a′, 2a′ + b′ + c′ + d′, 2a′ + b′, 4a′ + 2b′ + 2c′ + d′).

This map can be naturally extended to the case over Rn.

For any element r = a+ bu+ cv+duv ∈ R, we define the Lee weight of r as wL(r) = wH(a, a+ b, a+
c, a + b + c + d), where wH denotes the ordinary Hamming weight for q-ary codes. The Lee distance of
r ∈ R can be similarly defined.

From the definition of the Gray map Φ, we can easily check that Φ is Fq-linear and it is also a
distance-reserving isometry from (Rn, dL) to (F4n

q , dH), where dL and dH denote the Lee and Hamming
distance in Rn and F4n

q , respectively.

3. Linear codes over R

In this section, we mainly show some familiar structural properties of R. The proofs of the following
theorems can be found in [13], so we omit them here.
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If Ai (i = 1, 2, 3, 4) are codes over R, we denote their direct sum by

A1 ⊕A2 ⊕A3 ⊕A4 = {a1 + a2 + a3 + a4|ai ∈ Ai, i = 1, 2, 3, 4}.

Definition 3.1. Let C be a linear code of length n over R, we define that

C1 = {a ∈ Fn
q |∃b,c,d ∈ Fn

q |η1a + η2b + η3c + η4d ∈ C},

C2 = {b ∈ Fn
q |∃a,c,d ∈ Fn

q |η1a + η2b + η3c + η4d ∈ C},

C3 = {c ∈ Fn
q |∃a,b,d ∈ Fn

q |η1a + η2b + η3c + η4d ∈ C},

C4 = {d ∈ Fn
q |∃a,b,c ∈ Fn

q |η1a + η2b + η3c + η4d ∈ C}.

It is clear that Ci (i = 1, 2, 3, 4) are linear codes over Fn
q . Furthermore, C = η1C1⊕η2C2⊕η3C3⊕η4C4,

and |C| = |C1| · |C2| · |C3| · |C4|. Throughout the paper Ci (i = 1, 2, 3, 4) will be reserved symbols referring
to these special subcodes.

According to Definition 3.1 and [13], we have the following theorem.

Theorem 3.2. Let C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4 be a linear code of length n over R. Then C⊥ =
η1C

⊥
1 ⊕ η2C⊥2 ⊕ η3C⊥3 ⊕ η4C⊥4 .

According to the definition of the Gray map Φ, we can easily obtain the following theorem.

Theorem 3.3. Let C be a linear code of length n over R, |C| = qk and dL(C) = d. Then Φ(C) is a
q-ary linear code with parameter [4n, k, d].

Let C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4 be a linear code of length n over R. Since C is a Fq-module,
then we have the following lemma.

Lemma 3.4. If Gi are generator matrices of q-ary linear codes Ci (i = 1, 2, 3, 4), respectively, then the
generator matrix of C is

G =

 η1G1

η2G2

η3G3

η4G4

 .

Moreover, if G1 = G2 = G3 = G4, then G = G1.

In the light of the definition of Gray map Φ, we can easily obtain the following proposition.

Proposition 3.5. If C is a linear code of length n over R with generator matrix G, then we have

Φ(G) =

 Φ(η1G1)
Φ(η2G2)
Φ(η3G3)
Φ(η4G4)

 =

 G1 G1 G1 G1

0 G2 0 G2

0 0 G3 G3

0 0 0 G4

 .

4. Skew cyclic codes over R

In this section, we assume C3 and C4 are equal. Before studying skew cyclic codes over R, we define a
skew polynomial ring R[X; θ] and skew cyclic codes over R. Next, we determine the structural properties
of skew cyclic codes over R through a decomposition theorem.
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Definition 4.1. We define the skew polynomial ring as R[x; θ] = {a0 + a1x + · · · + anx
n|ai ∈ R, i =

0, 1, · · · , n}, where the coefficients are written on the left of the variable x. The multiplication is defined
by the basic rule (axi)(bxj) = aθi(b)xi+j, and the addition is defined to be the usual addition rule of
polynomials.

It is easily checked that the ring R[x; θ] is not commutative unless θ is the identity automorphism
on R.

Definition 4.2. A nonempty subset C of Rn is called a skew cyclic code of length n if C satisfies the
following conditions: (1) C is a submodule of Rn; (2) if r = (r0, r1, · · · , rn−1) ∈ C, then skew cyclic shift
ρ(r) = (θ(rn−1), θ(r0), · · · , θ(rn−2)) ∈ C.

Theorem 4.3. Let C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4 be a linear code of length n over R, where Ci (i =
1, 2, 3, 4) are codes over Fq of length n. Then C is a skew cyclic code with respect to the automorphism
θ if and only if Ci are skew cyclic codes over Fq with respect to the automorphism θ.

Proof. For any r = (r0, r1, · · · , rn−1) ∈ C, let ri = η1ai + η2bi + η3ci + η4di for 0 ≤ i ≤ n − 1,
where a = (a0, a1, · · · , an−1) ∈ C1, b = (b0, b1, · · · , bn−1) ∈ C2, c = (c0, c1, · · · , cn−1) ∈ C3 and d =
(d0, d1, · · · , dn−1) ∈ C4. If Ci are skew cyclic codes, then ρ(r) = ρ(η1a + η2b + η3c + η4d) = η1ρ(a) +
η2ρ(b) + η3ρ(d) + η4ρ(c) = η1ρ(a) + η2ρ(b) + η3ρ(c) + η4ρ(d) ∈ C. This implies that C is a skew cyclic
code over R.

On the other hand, if C is a skew cyclic code over R, we have ρ(r) = (θ(rn−1), θ(r0), · · · , θ(rn−2)) =
η1ρ(a) + η2ρ(b) + η3ρ(c) + η4ρ(d) ∈ C, which implies ρ(a) ∈ C1, ρ(b) ∈ C2, ρ(c) ∈ C3, ρ(d) ∈ C4. Thus Ci

are skew cyclic codes over Fq.

According to ([4], Corollary 18), we know that the dual code of every skew cyclic code over Fq is
also skew cyclic. By using this connection and Theorem 4.3, we get the following corollary.

Corollary 4.4. If C is a skew cyclic code over R, then the dual code C⊥ is also skew cyclic.

The following theorem determines the generator polynomials of a skew cyclic code of length n over
R.

Theorem 4.5. Let C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4 be a skew cyclic code of length n over R
and suppose that gi(x) are generator polynomials of Ci (i=1, 2, 3, 4) respectively. Then C =

〈η1g1(x), η2g2(x), η3g3(x), η4g4(x)〉 and |C| = q4n−
∑4

i=1 deg(gi(x)).

Proof. Since Ci = 〈gi(x)〉, for i = 1, 2, 3, 4, and C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4, then

C =

{
c(x) =

4∑
i=1

ηiri(x)gi(x)|ri(x) ∈ Fq[x; θ]

}
.

Hence C ⊆ 〈η1g1(x), η2g2(x), η3g3(x), η4g4(x)〉. Conversely, for any
∑4

i=1 ηiki(x)gi(x) ∈ 〈η1g1(x), η2 ·
g2(x), η3g3(x), η4g4(x)〉, where ki(x) ∈ R[x; θ]/(xn − 1), then there exist ri ∈ Fq[x; θ] such that
ηiki(x) = ηiri(x), i = 1, 2, 3, 4. Thus 〈η1g1(x), η2g2(x), η3g3(x), η4g4(x)〉 ⊆ C, which implies C =
〈η1g1(x), η2g2(x), η3g3(x), η4g4(x)〉.

Since |C| = |C1| · |C2| · |C3| · |C4|, we obtain that |C| = q4n−
∑4

i=1 deg(gi(x)).

Theorem 4.6. Let Ci (i = 1, 2, 3, 4) be skew cyclic codes over Fq and gi(x) be the monic generator
polynomials of these codes respectively, then there is a unique polynomial g(x) ∈ R[x; θ] such that C =

〈g(x)〉 and g(x) is a right divisor of xn − 1, where g(x) =
∑4

i=1 ηigi(x).
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Proof. By Theorem 4.5, we know C = 〈η1g1(x), η2g2(x), η3g3(x), η4g4(x)〉. We take g(x) = η1g1(x) +
η2g2(x) + η3g3(x) + η4g4(x), obviously, we have 〈g(x)〉 ⊆ C. On the other hand, one can check that
ηigi(x) = ηig(x)(i = 1, 2, 3, 4), which implies C ⊆ 〈g(x)〉. Hence C = 〈g(x)〉. Since gi(x) are monic right
divisors of xn − 1 ∈ Fq[x; θ], then there exist ri(x) ∈ Fq[x; θ] such that xn − 1 = ri(x)gi(x). Thus

[η1r1(x) + η2r2(x) + η3r3(x) + η4r4(x)]g(x) =

4∑
i=1

ηiri(x) ·
4∑

i=1

ηigi(x)

=

4∑
i=1

ηiri(x)gi(x)

=

4∑
i=1

ηi(x
n − 1)

= xn − 1.

This implies g(x) is a right divisor of xn − 1.

Corollary 4.7. Every left submodule of R[x; θ]/(xn − 1) is principally generated.

Let g(x) = g0 + g1x + · · · + gtx
t and h(x) = h0 + h1x + · · · + hn−tx

n−t be polynomials in Fq[x; θ]
such that xn − 1 = h(x)g(x) and C be the skew cyclic code generated by g(x) in Fq[x; θ]/(xn − 1),
according to Corollary 18 in [4], then the dual code of C is a skew cyclic code generated by h̃(x) =
hn−t + θ(hn−t−1)x+ · · ·+ θn−t(h0)xn−t. Therefore we have the following corollary.

Corollary 4.8. Let Ci be skew cyclic codes over Fq and gi(x) be their generator polynomial such that
xn − 1 = hi(x)gi(x) in Fq[x; θ]. If C is a skew cyclic code over R, then C⊥ = 〈

∑4
i=1 ηih̃i(x)〉 and

|C⊥| = q
∑4

i=1 deg(gi(x)).

Let t be the order of θ. The following theorem can be obtain by applying similar steps of the Theorem
3.7 in [6].

Theorem 4.9. Let (n, t) = 1 and C be a skew cyclic code of length n, then C is a cyclic code of length
n over R.

In [8], the factorization of xn−1 in Fq[x; θi] is unique if (n, ti) = 1. Let C = η1C1⊕η2C2⊕η3C3⊕η4C4

be a skew cyclic code of length n over R and suppose that gi(x) are generator polynomials of Ci(i =
1, 2, 3, 4) respectively. Then each gi(x) is a right divisor of xn − 1 in Fq[x; θ]. θ acts on Fq as follows,
θ(a) = ap for all a ∈ Fq. Thus the order of θ on Fq is m. Hence if (n,m) = 1 then the factorization of
xn − 1 in Fq[x; θ] is unique. Now we can determine the number of distinct skew cyclic codes of length n
over R, where (n,m) = 1.

Corollary 4.10. Let (n,m) = 1 and xn−1 =
∏r

i=1 p
si
i (x), where pi(x) ∈ Fq[x; θi] is irreducible, then the

number of distinct skew cyclic codes of length n over R is equal to the number of ideals in R[x]/(xn− 1),
i.e.

∏r
i=1(si + 1)3.

5. Application example

In this section, we will exhibit a example of skew cyclic codes and their Gray images over GF (9).
Before giving a example, we first give the definition of Plotkin Sum.

Let C ⊕P D denote the Plotkin sum of two linear codes C and D, also called (u|u+ v) construction,
where u ∈ C, v ∈ D. For more information on the Plotkin sum, one can see a good survey [9].
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In the following, we assume Gi are generator matrices of 9-ary linear codes Ci for i = 1, 2, 3, 4,
respectively. Let C = η1C1 ⊕ η2C2 ⊕ η3C3 ⊕ η4C4 be a linear code of length n over R, then its Gray
image Φ(C) is none other than

(C1 ⊕P C2)⊕P (C3 ⊕P C4).

We construct skew cyclic codes over GF (9) with some conditions. If C1 is a [20, 1, 20] code, C2 is a [20, 9, 4]
code, C3 is a [20, 10, 2] code and C4 is a [20, 10, 2] code, then the Gray image of C has parameters [80, 30, 4]
over GF (9).

6. Conclusion

This paper is devoted to studying skew cyclic codes over R = Fq + uFq + vFq + uvFq, where u2 =
u, v2 = v, uv = vu, q = pm and p is an odd prime. First, we introduce the structure of linear codes over R
and show the structural properties of skew cyclic codes over R. Next, we give the enumeration of distinct
skew cyclic codes over R when n is odd.
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